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Stochastic Dynamics and Bifurcation Behavior of Nonlinear
Nonconservative Systems in the Presence of Noise

Abstract

The main objectives of the completed work are to I-ve!op

mathematical techniques to reduce the dimensionality of multidegree-of-

freedom nonlinear systems near bifurcation points and to solve for the

response statistics of the reduced system. The asymptotic behavior of

nonlinear dynamical systems in the presence of noise is studied using the

method of stochastic normal forms. The crucial point in the normal form

computations is to find the resonant terms that cannot be eliminated

through a nonlinear change of variables. Subsequent to reduction of the

dimensionality, a Markovian approximation is used to obtain the associated

stochastic normal forms. The key result is that the second order stochastic

terms have to be retained in the normal form computations in order to

capture the contributions of the stable modes stochastic components to the

critical modes drift terms. It is also shown that the method of extended

stochastic averaging is in fact "equivalent" to stochastic normal forms for a

specific class of nonlinear systems. In addition, mean square stability of

the response is obtained and the bifurcation behavior and associated

stationary and transient probability density functions for the reduced

stochastic system are determined. Finally, the general results are applied

to the study of the dynamics of aircraft at high angles of attack, plates

under gas flow, structures under follower forces, and propellant lines

conveying pulsating fluid.
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1. Introduction

The goal of this work is to obtain results pertaining to the statistical

as well as the sample behavior of nonlinear structures subjected to random

excitations. Among many results obtained in this work for nonlinear i
stochastic systems, the results pertaining to the problem of stabilization by

noise are of practical significance. These effects have been demonstrated by

the P.I. for both gyroscopic and nonconservative systems [1,2]. 1
In order to understand the bifurcation behavior of a dynamical

system, a reduction in the mathematical complexity of the n-dimensional i
problem is required. Often certain variables which are asymptotically

stable can be eliminated as being unimportant with the essential behavic

of the system restricted to the dynamics of the remaining critical variables. 3
The initial work involves developing mathematical techniques such as

stochastic normal forms [3] and extended methods of stochastic averaging i

[4] to approximate multidegree of freedom nonlinear structures subjected to

random excitations by lower dimensional Markov diffusive process. Thus,

as a first step we have developed and extended mathematical techniques, to 5
reduce the dimensionality of nonlinear stochastic systems near bifurcation

points. Subsequent research involves applying these techniques and i
proposed methods (see, for example, [5]) in order to obtain an

understanding of co-dimension one [6] and co-dimension two [7] stochastic

bifurcations. The major goals of this research effort are to examine the

stochastic dynamics, stability and bifurcation behavior of various nonlinear

stochastic problems with direct impact on the mission of AFOSR. Such

problems include: aircraft at high angles of attack under the effect of

atmospheric turbulence; rotating shafts and rotating systems under n

pulsating loads; propellant lines conveying turbulent flow, etc. 3
I
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The PI has completed most of his objectives and the results from this

project have revealed new features in the theory of nonlinear stochastic

dynamics. Highlights of these features are briefly discussed in the

following subsections.

2. Development of Mathematical Techniques

When a multidegree-of-freedom mechanical system undergoes a

bifurcation, it does so only in a few degrees of freedom. The simplest

deterministic example to point out is when a single mode becomes unstable

due to a control parameter 4 being slightly increased beyond a critical value

g.c. For example, p. and p.c represent the axial and Euler loads respectively,

in buckling of a column. In the vicinity of .tc, the temporal evolution of the

motion of the critical mode in the first approximation is given by

Ix = (g. - 4c) x + ax3 . This situation becomes more complicated when a set of

control parameters g are varied in such a way that several modes may

simultaneously become marginally unstable. In such situations, the

I system is said to undergo a multiple bifurcation. The associated simplest

possible amplitude equations which capture the complete dynamics of the

Ioriginal system in the vicinity of p, are called the normal form.

For deterministic systems, in addition to the theory of normal forms,

the theory of center manifolds and method of averaging are particularly

useful in reducing the dimensionality of large nonlinear dynamical

systems. However, consistent methods for the analysis of multidegree-of-

freedom stochastic nonlinear systems are currently lacking in the

engineering community. The mathematical techniques presented in this

section, namely stochastic normal forms and extended stochastic

averaging, respond to this need. In order to understand the complex
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interaction between noise and the inherent nonlinearities in mechanical

systems and their bifurcation behavior, a reduction in the mathematical 3
complexity of the n-dimensional problem is required, as discussed, in

which the dynamics of the response are captured in the remaining critical i
modes. Often certain variables which are asymptotically stable can be

eliminated as being unimportant with the essential behavior of the system

restricted to the dynamics of the remaining critical modes. To this end, the

method of averaging was extended, following Papanicolaou and Kohler [8),

by the authors [4] to include the analysis of nonlinear systems which exhibit i

co-dimension one bifurcations. Application of this method to study

stochastically perturbed general nonconservative problems was presented

by Sri Namachchivaya and Tien [2]. U
The ideas of center manifold and normal forms were extended to

stochastic systems by Knobloch and Wissenfeld [91 and Coulett [101, U
respectively. The applicability of the method of normal forms to nonlinear

stochastic systems was demonstrated by Sri Namachchivaya and Hilton i
[11]. However, these extensions were unsuccessful in capturing the m

contributions of the stochastic components of the stable modes to the critical

mode drift terms. Such effects were shown to exist by Sri Namachchivaya 3
and Lin [4] using extended stochastic averaging. The goal of this work is to

present the method of stochastic normal forms developed by Sri I
Namachchivaya and Leng [3], in order to reduce the the dimensionality of m

nonlinear stochastic systems near bifurcation points. Furthermore, it has

been shown that these two methods are, in fact, equivalent for a specific 3
class of nonlinear systems. We also wish to add that an alternate approach

has been used by Caughey [12] to analyze nonlinear stochastic systems. U
This approach replaces a nonlinear stochastic system without an exact 1

i
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solution by an "equivalent" system with an exact solution chosen in some

Ioptimal fashion. There need not be any reduction in dimension. The

method of stochastic normal forms differs because it replaces the original

system by an "equivalent" system of lower dimension by the elimination of

Istable modes.

There are two approaches to obtaining normal forms in deterministic

systems. As in Guckenheimer and Holmes [13], in the first method, one

first computes the lower dimensional center manifold on which the

dynamics reduces for large times and then a nonlinear change of

coordinates is applied to transform a small dimensional system to normal

form. In the second method, one systematically expands the original vector

fields in powers of the amplitudes of critical modes, as in Elphick et al. [14],

to yield both the normal form and center manifold. This paper outlines a

method which has its basis in [3,14].

2.1 Method of Stochastic Normal Forms

The theory of normal forms goes back to as early as Euler; Poincare

[15] and Birkoff [16] contributed a more definite form of the theory. Poincare

[15] considered the problem of reducing a system of differential equations of

the form

dx = Ax+f(x) to d- = Ay, xE R, yeR
dt dt(1)

The formal solution of this problem deals with finding near-identity

coordinate transformations x = y + '1(y) which eliminate the analytic

expressions of the nonlinear terms. IL was shown that suc'i a formal
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1
solution exists provided the above system is hyperbolic and the eigenvalues

Xj of the diagonalizable matrix A satisfy 5

Xi i k for j = 1,2,...,n, Ik ki = >k 2 (2) 1

where k is an integer vector k = (k1 , ,..., kn) with k1 > 0. Furthermore, it 1

was proven that if, in addition to the above results, the eigenvalues lie

strictly to one side of a line through the origin in the complex plane, then

the formal series t'(y) is convergent. If the system is nonhyperbolic or the 1
condition (2) is violated, the analytic expressions of the nonlinear terms

cannot be completely eliminated. The normal forms of equation (1) are

dictated by the nature of the linear operator and contain only resonant 3
nonlinear terms that cannot be eliminated through a nonlinear change of

variables. Thus, the nonlinear system in (1) can be reduced to 3
dy = Ay +g(y) , yER n  (
dt ''(3) I

where g is simpler than f and the resulting simplified nonlinear equations

are said to be in normal form. Such reductions have been widely used to 1

study deterministic autonomous and nonautonomous systems and Arnold

[17] contains a good exposure of this subject. In bifurcation problems, the

eigenvalues of the linear operator A are composed of two sets, one on the 1

imaginary axis and the other with strictly negative real parts. The linear

vector space E associated with A can also be divided accordingly as I
E = Ec e Es such that xc r E, and x. e E with x = xC x( . 1

I
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The purpose of the theory of normal forms in our investigations is

two-fold: first, to extend the normal form theory to incorporate nonlinear

stochastic systems and secondly, to demonstrate the relationship between

stochastic averaging and normal form theory for non-nilpotent systems. To

this end, consider a dynamical system governed by nonautonomous

differential equations in Rn

k = A(rl)x + fx , 1) + a4(t) B(Til)x = A(71)x + fx , TI) + aF(x, t, r) (4)

which depend on two external parameters il and a. The matrices A and B

are nxn matrices which depend smoothly on 1, 4(t) is a stationary

stochastic process with zero mean representing the parametric excitations,

and x = 0 is the trivial solution of Eq. (4) for all values of T1 and (Y. The

nonlinear function f is a vector function which is smooth in its arguments

and the ith component of the rth order polynomial can be represented by

N
£'i 1f m2 n~(X,0) - i, x =  i,mj,m2... m i X 2  ...M. m,,

m m r=1 (5)

where m = (Ml, m2 .... mn) are non-negative integers, xm = xm'- -, x ... x,

is an rth order monomial such that Y, mj = r, fi,m are the coefficients of the

monomial with a particular combination of (M 1 , M 2 ... , mn) and the

summation is over all such monomials. Furthermore, the trivial solution

of Eq. (4) in the absence of stochastic excitation, i.e., a = 0, loses

stability and undergoes a co-dimension one bifurcation, namely, either

a Hopf or a simple bifurcation at TI=0, and the associated linear operator for

these cases is A(0) = diag {ico1 , - ic01 , ,..., X)} , or diag (0, X2 , X3 .... X-•

Consider a near-identity nonlinear transformation

x = y + W(y) + GU(y,t) + (y2V(y,t)
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where W(y) is a homogeneous vector polynomial of degre k, k being the

lowest order nonlinearity that exists in Eq. (4), U(y,t) and V(y,t) are vector 5
polynomials with time dependent coefficient. Interpreting Eq. (4) in the

Stratonovich sense, we want the transformation to yield i

y = A(TI) y + g (y,TI) + oG (y,T, (t)) + a 2H (y,, (t)) (6)

where g(yO) = Y g;m , and ym are the rth order monomials such that

mj = r with G(y,0,4(t)) and H(y, 0, 4(t)) at least linear in y. Now, we

define the Lie bracket of W and Ay as

ai
LA = [W , Ay] Ay- AW.

')YG (7)

Considering now a monomial in the ith component of W, using the fact that 3
A is diagonal and the notation of Eq. (5), the above equation yields

LAW iy .[(m, X)- Xi i;m ym  (8)

Equating the monomials of order k, we can then evaluate the coefficients of 5
the monomial elements of W by solving

ILA Vi;m I' imgkmgi;m J; =i~ , Ymj=k(9i

where 4m, im are the coefficients of the monomial ym of the following 3
polynomials of degree k, respectively,

I
I
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k k -1 a w (k+1-s)( )Yfi (y + W(y)), 1: i-Z g ,(y)•
Ir=2 s=2

LA is called the homological operator, since LA: Hk (Re) -- Hk (Rn), where

Hk (Rn) is the space of homogeneous vector polynomials of degree k on Rn .

The crucial point in the normal form computations is to find a

homogeneous polynomial vector field of degree k in a space complementary

to the range of the homological operator. The dimension of the vector space

Iincreases with k. This makes the computations cumbersome for large k.

Furthermore, since the matrix A is diagonal, the image of LA, Im(LA), and

its null space, ker (LA), span the whole space. Consequently, in order to

solve Eq. (9) we should have hm e Im (LA) and this gives a condition that

gi;m may be chosen in the null space of LA, i.e., g.m ker (LA) when the null

space is not empty. Furthermore, from Eq. (8), the resonance condition for

the deterministic terms reduces to

In
rmI Xl - X.i = 0 for all i = 1,2,...,n .

l=l

I Similarly, equating the terms of order k in y and 1 in a, the time

i dependent coefficients of the monomial elements of U are evaluated from

I + LA) Uikm(t) = Fkm(t)- Gkm(t) - Gkm(t)
(10)

I -k
where Fi,m(t), Gim(t) are the coefficients of the monomial ym of the

I following polynomials of degree k, respectively,

I
I



10U

k k-1 k+J.-s ( ~)
I FT (y + W(y),t) + (I +Wy)U; (y't)
r--1 S=1 i~xj

k-1iw k+i-s Gjk k-isXY s G(y't) + IDik1(y't) gj5 (y).
S=1 0s=2 G j

Identifying the terms of order k in y and 2 in (y, the time dependent

coefficients of the monomial elements of V are evaluated fromI

+ LA) V~m~t) = Fm(t) - Hlm(t)H1mt

where Fidmt) , Hi;m(t) are the coefficients of the monomial ym of the

following polynomials of degree k, respectively,

D (y+W(y),t) + il ((yt)

-liUSyt -Yj Ii

+k-i k-s a2f(k+2-r-)()

+ ' Y I U(y(t)t+ Hkr y~t)
s=1 r=1 D=1~

kls (k~i-s)k ~ ~ V D(y)(Yt) k-

s=2 OlYjI
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In Eqs. (10) and (11), the derivative (a/t) acts only on the functions

I Ukm(t) nd vkm(t), respectively. Equation (10) contains the results from Eq.

(9), and Eq. (11) contains the results from both Eqs. (9) and (10). In the above

expressions, the repeated subscripts imply summation up to n. After

taking Fourier transforms, the resonance condition for the stochastic terms

becomes

n

jo + ml X- Xi = 0 for all i = 1,2,...n.
t~l (12)

and this expression dictates the stochastic normal form. The coefficients of

the monomial elements W, U and V are solved from Eqs. (9), (10) and (11),

respectively, keeping in mind both the deterministic and stochastic

resonance terms.

The noise terms in the critical modes which contain stable variables

can be eliminated. Let the noise term be of the form

(yc'.y .mP ...... ys)

then the stochastic resonance condition is

P q

JI + X mXlC + X '.'=O

where the Xci's are either zero or pure imaginary and the Xsj's have

negative real parts. Since at least one of the nj's is a non-negative integer,

it is obvious that the resonance condition can never be satisfied for any
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value of Q. Hence, the noise terms containing the stable variables are

removed from the critical modes. 5
Similarly, in the case of linear multiplicative noise, noise terms of

the form Ycl 4(t) can be removed from the stable modes. Checking the I
resonance condition,

jQ2 + (1) ,j - X., = 0 , Eml +Eni=l1

since Xl is zero or pure imaginary and k. has a negative real part, the 3
resonance condition cannot be satisfied for any Q. It is worth pointing out

that, for higher order noise terms, such a decoupling may not be possible U
because of "stochastic resonance". This can be illustrated through an

example in which cj =Jo, XC2 = "Jo (Hopf bifurcation), and Xs1 = -

Let the stable mode contain a noise term of the form ml Yc2 y (t). The

resonance condition is

j + ml o) + m 2 (-jo) + 1 (-y) - (-y) = 0, i.e, j(+ (ml -m 2) o) = 0I

which is satisfied for Q = (M2 - in) Co. Thus, it is not always possible to

remove such terms unless the noise 4(t) has no energy at the frequencies

Q = (m2 - in) O. I

More specifically, putting x = {xc , x}, f = {fc , fs}, W = {WC , WS), U =

{Uc , Us}, V = {Vc, V.} and A = diag (Ac , As} where the eigenvalues of Ac 3
are pure imaginary or zero and the eigenvalues of As have negative real

parts, the normal form procedure can be stated as: given I
dxc = Acxc+fc(xc,xs,1})+Fc(xc,xs,r; (t)) I
dt

dxs = As xs + fs(xc, xs, T1) + aFs(xc, xs, T ; (t))dtI

I
I
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the near identity transformations

xc = Yc + Wc (Yc' Ys ,t1) + aUC (y:,ys,4(t),rj) + y2Vc(YcYs,4(t),Tl

X. = Ys + Ws (yc, Ys ,'I) + aUs (yC,ys,(t),rT)+ 2Vs(yCYs,4(t)Jl)

yield

dty = Acyc + gc(yc,Tl) + aGyc,4(t),'T) + a2Hc(yc, (t),rq)
dt

dys = Asy. + gs(yc,Ysy,) + (oG(y,,ys,t(t),Tj) + a2Hs(yc,ys, (t),T1)
dt

and W, U and V are such that gc, Gc and Hc are as simple as possible and

take values in Ec.

Since the theory of normal forms arises from perturbation analysis,

I it is usually presented for equations which contain a small parameter. In

nonlinear equations, the small parameters can be easily introduced by

scaling of the state variables. In order to study the interplay between the

I deterministic and stochastic components of the system, it is assumed that

the nonvanishing nonlinear term in the normal form is of the order E2 and

i (=£. Furthermore, for simplicity, it is assumed that the vector field f is an

odd function of x and the stochastic terms are linear in x and can be

I partitioned as

] Fs (xC , Xs , t(t) 'TO)I Bsc (4(t) , TI)Bs. (4(t) , 11) xs (13)

I As shown earlier, the noise terms in the critical modes which contain the

stable variables can be eliminated. For the case of linear multiplicative

I noise, the same goes for the Bsc(t) xc terms in the stable mode equations.

I
I
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Hence, performing the normal form transformation described earlier, we

obtain

=~ [A o]{YC} I [gc + 42 Bgg( Bt) ] (
ys 0 As Y g3 (Yc , ys 0 gs( Ys I

[ Bcs(t) Usc(t) 0 JycI

2 0 Bsc(t) Uc5(t) Ys (14) 3

where

Ves = Ac Ucs - Ucs As + Bcs(t) (15)

tisc = As Us- U¢ Ac + Bc(t) (16) U
Using the fact that the noise is linear multiplicative allows one to

decouple the stochastic terms in (13) leading to Eqs. (14), (15) and (16),

which provides the 0(C2) contribution from the stable modes to the critical 3
modes. The method of normal forms has effectively uncoupled the critical

modes from the stable ones. It is worth pointing out that the deterministic 3
part of the uncoupled system is the same as the deterministic normal form

for the system unperturbed by noise. The nonlinear vector function gc(yc) I

for various co-dimension one and two bifurcations are given in Arnold [17] 3
and Guckenheimer and Holmes [13]. It remains now to solve Eqs. (15) and

(16) in order to completely obtain the stochastic components of the normal

form. Before proceeding further, Eq. (14) is brought to a "standard form" by I
using a transformation

yc = e Atz

I
I
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I
and Eq. (14a) can be replaced by a differential equation in z asI_
dz = e2 e - Act gc (e Act z) + Ee" AtBc(t) e A-tz + e2e "ActBcs(t)Vsc(t) e Actz
dt (17)

Using the fact that the normal form g3 (Yc) lies in the null space of the

homological operator LA, i.e.,

I3 a3gc (Y") Ac Yc - Ac g3 (Yc) = 0

IYc

the total differential of g3 (yc) = gc (e Act z) can be written as

3 3

d [g3(ecz] e Actz = c Ac Yc = Ac g3 (Yc)
dt (Yc aYc (18)

I Equation (18) is a linear first order ordinary differential equation in g3 (yc),

whose solution is

I (yc) = e Act g (xc, t=O) = e Act g (z)

I Thus Eq. (17) can be rewritten as

dzz =-2 gc(z) + e e "Act Bcg(t) e Act z + e2 e -Act Bc(t) Vsc(t) e Act z
dt (19)

I 2.2 Markov Approximation of Reduced System

I In this section, the above lower dimensional equations are replaced

by diffusive Markov processes whose transition probabilities at time

I intervals At (At >> Tcor) are approximately the same as those of the original

processes. There are two ways of deriving the drift and diffusion



16 1
coefficients which completely describe the Markov process. In the first

method, the increments x(t2) - x(ti) and x(x4) - x(t3), where tl < t 2 < t3 < t 4 , 5
are assumed independent when the correlation time of the smooth process

is much smaller than the relaxation time of the reduced system U
(Stratonovich [18]). The second method deals with the asymptotic behavior I
of the solution of the lower dimensional system when Tcor tends to zero. The

use of the first method to calculate the drift and diffusion terms is shown in

the Appendix of [3]. A physical interpretation of this approach which is

more appealing to engineers is given by Lin [19]. It will be shown that the I
approximation of the solution of the lower dimensional cc-ualons by a

Markov process give rise to the same drift and diffusion terms as those

obtained in the extended stochastic averaging technique [4]. However, for 3
simplicity, consider only two cases, one in which Eqs. (15) and (16) will be

solved explicitly. 3
Case 1: Ac = 0 (divergence instability)

In this case, Eqs. (15) and (16) reduce to:

Ocs =- Ucs As + Bcs (t) (20) 1
tsc = As Us + Bsc (t) (21)

'The required particular solution for the normal form transformation is 3

UCS(t) = Bs(s) e -s ds e I
Jt (22) 1

US(t) = e At (fe - 's Bs(s) ds)(3
(23)

I
I
U
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Hence, the reduced system is (where z now represents the variable after

transformation)

z = E2 F,(z) + e Bc(t) z + e2 (Bcs(t) f e -As(s-t) B(s) ds) z }  (24)

Using the Markovian approximation and performing a time-translation, it

is found that the drift contribution from the stable modes to the drift term of

the critical mode is

U Mt {E [(jo Bc(t) e - As BSC (t+'r) dt) xCi)(5

which agrees with that obtained from the extended averaging theorem.

Case2: Ac = diag (-jcol , ci....., .cO , jcoj (flutter instability)

In this case, the solution of Eqs. (15) and (16) are:

UCS(t) = - e Act f e ACs Bcs(S) e As ds e" Ast
(26)

US) = e AstBf ee Bs)eAcs ds)eAct

the d oder (27)

H As before, the 2nd order correction to the drift from the stable mode is:

Immmmmmmm mmmmmmmmm nmmmmu
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Mt (E [( e -ActBcs(t) e As" Bsc(t+t) e Ae(t+) d) xc(2

(28) I

which agrees with that obtained from the extended averaging theorem. 3
In both examples, we have assumed that the deterministic part has

been reduced to a normal form. This assumption does not invalidate the i
equivalence in any way, since it has been shown that deterministic normal 3
form and deterministic averaging methods are equivalent for non-nilpotent

systems, Arnold [17] and Sethna [20]. i

In the above discussions, we have assumed that the linear operator is

diagonalizable. However, when it is not diagonalizable, the method of U
averaging cannot be applied due to the fact that the matrix eAt contains

terms that are polynomials in t and the time average does not exist. Unlike

averaging, normal forms can be used in the analysis of such nilpotent 3
systems. Results for a system with a double zero bifurca.tion is presented by

Sri Namachchivaya [7] for a two dimensional case. i
A comparison has been made between the stochastic normal forms

and stochastic averaging, and the equivalence of these two methods is

demonstrated for a special class of nonlinear stochastic systems [3]. It has 3
been shown that for systems under the effect of linear multiplicative and

additive noise, the stable modes lead to a second order correction in the I
critical modes which, to our knowledge, has been ignored by previous

researchers. The results justify the viability of stochastic normal forms as

an alternative to stochastic averaging, which to date has been a traditional 3
technique in the analysis of weakly non-linear systems under broad-band

excitation. Moreover, unlike stochastic averaging, the method of stochastic 3
normal forms is not limited to systems with non-nilpotent linear parts.

I
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I
3. Summary of Results of Completed Work

I The work completed under this project is summarized in the

following subsections. Detailed analyses of these problems are given in

Appendices A-F. Most of the results of the initial investigation are

presented in [6]. However, due to its great length, this paper has been

omitted from the final report.

3.1 Stochastic Analysis of Nonconservative Systems

As a second step, using the above developed extended averaging

method, the PI and his graduate student [2] investigated the dynamic

3 stability of stochastically excited general linear nonconservative systems.

Modified stochastic averaging method is employed to obtain the contribution

from the stochastic components of the stable modes to that of the critical

modes. Results of mean square stability are shown to depend only on those

U values of the excitation spectral density near twice, difference and

3 combination of natural frequencies of the nonconservative system. The

details are found in Appendix A. Subsequent research involved applying

3 these techniques to obtain an understanding of co-dimension one [6,21] and

co-dimension two [7] stochastic bifurcations that occur in nonlinear

I nonconservative systems.

* Statistical properties of the stochastic response of a system

undergoing a Hopf or simple bifurcation in the presence of parametric and

external excitations have been obtained [6,21]. It was found that the

addition of small stochastic parametric excitation gives rise to a shift in the

bifurcation point whereas the addition of external excitation modifies the

bifurcation behavior entirely. The result is shown in Fig. 1, where we

observe that the parametric excitation has a "stabilizing" effect. That is, it

delays the transition of the trivial solution (zero equilibrium state) from
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being a stable solution to an unstable solution. Physically, this indicates

that parametric excitation is not necessarily undesirable when considering 5
system stability. Furthermore, it is shown that in multidegree-of-freedom

systems the contribution of the stochastic components in the stable modes toI

the drift term of the critical mode may be beneficial in terms of stability.

The stationary probability density functions have been obtained. The

effect of external excitation can also be seen by comparing Fig. 2 and Fig. 3.

This distinguishing feature is reflected in the stationary moments of the

system shown in Fig. 4. The above findings illustrate the non-intuitive I
behavior possible in stochastically perturbed nonlinear systems on the

verge of bifurcation.

A dynamical system undergoes a co-dimension two bifurcation due to

the presence of additional degeneracies other than those encountered for

the simple and the Hopf bifurcations. In [7], attention is restricted to the 3
stochastic version of the case of double zero eigenvalues with non-semi-

simple forms. The case under investigation is that in which the normal I
form associated with non-semi-simple double zero eigenvalues is perturbed

by weak Gaussian white noise. Moreover, since the normal form for this

case represents the van der Pol - Duffing oscillator, it can be viewed as a 3
van der Pol - Duffing oscillator under both parametric and external

excitations. Detailed analysis of the stochastic normal forms of this co-

dimension two bifurcation has been given by Sri Namachchivaya in

Appendix B.

3.2 Alicaions
The major goals of this research effort were to examine the stochastic

dynamics, stability and bifurcation behavior of various nonlinear stochastic I
problems with direct impact on the mission of AFOSR. Such problems

I



I 21

include: aircraft at high angles of attack, panels under gas flow with both

* turbulent boundary layers and random axial loads; rotating shafts and

rotating systems under pulsating loads; propellant lines conveying

turbulent flow, etc.

3.2.1 Aircraft at High Angles of Attack [22,23]

Consider an aircraft in steady flight at an angle of attack s. Suppose

some disturbances take place at time t = 0, e.g., due to a change in the flap

deflection angle; the aircraft will subsequently undergo an unsteady motion

relative to its steady flight. Such an unsteady motion of the aircraft

modifies the air flow and hence the aerodynamic forces on the aircraft

which in turn determine its motion. Thus, the aircraft's subsequent

motion can only be determined by simultaneously solving the unsteady flow

equations of the air and the equations of motion of the vehicle as a rigid

body, aeroelastic effects being assumed negligible.

Although simultaneously solving the coupled equations in principle

represents an exact approach to the problem of arbitrary maneuvers, it is

inevitably a very difficult and costly approach. In classical aerodynamics,

the traditional approximate approach is to assume the pitching motion to be

a small amplitude periodic oscillation consisting of simplc harmonics. On

this basis the flow equations are decoupled from the inertia equation, and

are linearized to determine the aerodynamic respnnse to such a harmonic

motion. The so-called aerodynamic coefficients thus obtained are then used

to predict the motion of the aircraft. Even though this approach ignores the

time-history effects on the flow field and the aircraft motion, it gives a good

approximation for calculating the aerodynamic response, and hence, the

pitching moment from the unsteady flow equations. This approximation

was adopted b- the PI in his investigations [22,231 of this problem.
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I
A complete unfolding of a co-dimension two bifurcation due to a

double zero eigenvalue of the equations of pitching motion of an aircraft was

carried out in the vicinity of zero stiffness derivative, and zero damping

derivative. Unfolding of such a singularity uncovered all possible

bifurcations that were present in the vicinity of the singularity, in addition

to the results of various other previous investigations. This method

provided results pertaining to uniqueness of limit cycles and global

bifurcations. A detailed analysis of this problem is presented in Appendix

C.

The analysis of post-critical behavior of aircraft based solely on

deterministic nonlinear analysis has not proven to be adequate. The

inclusion of the effects of a turbulent atmosphere increases the

sophistication of the model. It is possible to regard isotropic atmospheric

turbulence as a broadband stochastic process. The nonlinear system now m

has stochastic elements. Appendix D contains a broader description and I
demonstrates the methodology by investigating the effects of atmospheric

turbulence on the lateral dynamics of fighter aircraft at large angles of

attack and sideslip.

3.2.2 Rotating.Shaft [1]

One of the most fundamental components of a mechanical system is

a rotating shaft. It is, therefore, not surprising that through the years

considerable effort has been directed at obtaining a better understanding of

such mechanisms. Toward this end, an analytical method, based on some

of the mathematical ideas mentioned above, has been applied for

investigating a rotating shaft under stochastic excitations of small

intensity. Explicit stability conditions are derived for first and second i

moments of a two degree-of-freedom rotating shaft. When the stochastic

I
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excitation is a white noise excitation, the first moment stability conditions

reduce to that of the deterministic case. It is shown that the addition of

non-white noise excitation has a stabilizing effect on the parametric

instability of harmonically excited rotating shafts. Finally, the stability

conditions of a symmetric shaft along with their numerical results are

presented. The mean square stability conditions for purely white noise

excitation are given in Fig. 5(a) and 5(b), where So, D and W are the spectral

density, nondimensional damping and shaft rotational speed, respectively.

The o represents the normalized natural frequency of the symmetric shaft.

Explicit results for both the white and non-white noise cases are detailed in

Appendix E.

3.2.3 Propellant Lines Conve3ving Pulsating Fluid [24,25]

The transverse vibration of propellant l'nes of large liquid-fuel

rockets and other vehicles continues to be a problem for the space industry.

Here it is realistic to assume that the flow is turbulent and the support

excitations are random. The deterministic problem with harmonic flow

velocity has been investigated as a preliminary step [24]. In this

preliminary study, the ideas related to the method of averaging, Poincare-

Birkoff normal forms, and the center manifold theorem have been used at

different stages of the analysis to investigate the stability and bifurcation

behavior of nonlinear supported pipes conveying pulsating fluid. Explicit

results for the stability boundaries of the trivial solution, as well as

bifurcating paths and their stability, have been obtained for values of the

system parameters m (amplitude of the excitation) and u (frequency of the

excitation), where the value of u is taken in the neighborhood of

subharmonic and combination resonances. These results are presented in

Appendix F. In the subsequent study, the PI included the effect of random
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excitation and obtained results for mean square stability. The detailed

analysis is given in [25].
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l APPENDIX A

I. Introduction

This paper investigates the stability of the trivial solution of linear

nonConservative structural/mechanical systems, with stochastically varying

parameters. The stability of a single degree of freedom linear stochastic

system has been studied by several investigators. Notably, Stratonovilh and

Romanovskii [1], Weidenhammer [2], Graefe [3] found that stability depends

3only on the excitation spectral density at frequencies near twice the system's
natural frequency, a result analogous to that for the deterministic Mathieu

equation. These results have been extended by Arlaratnam and Srikantaiah [4]

and Sri Namachchivaya and Ariaratnam [5] for general multidegree of freedom

conservative nongyroscopic and gyroscopic systems, respectively. In this

paper, we deal with oscillatory multidegree of freedom linear systems with

gyroscopic and circulatory forces and it is assumed that a finite number of

3modes undergo flutter instability, while the remaining modes are assumed

stable. For systems examined in [4,5] the method of stochastic averaging,

Iwhich was initially proposed by Stratonovich [6], has been used to obtain

conditions for stability in the second norm of the response. However, for the

system under consideration, both the rapidly oscillating flutter modes and

decaying stable modes are coupled with rapidly varying stochastic

components. The asymptotic behavior of such a system Is studied using the

Umodified method of averaging [7,8].
II. Equation of Motion

The equations of motion of a linear nonconservative system subjected to

random parametric and external excitation of small intensity can be written in

the matrix form

Ag+ B g C g. cF(g.g.t) (1)

In equation (1), the n vector g represents the generalized coordinates of the

I
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system, A, B and C are constant nxn matrices, F represents an n vector linear

term in 9 and g, i.e. 3
F(g,j,t) - (D19 + D 2 )f(t) + .sg(t)

Furthermore, the matrix A - AT represents mass-like terms and is generally 1
positive definite. The matrix B - p(D+G), where D represents linear energy

dissipation terms and the matrix G represents the gyroscopic terms arising

usually from the Coriolis forces, i.e. G - -GT. The matrix C = K
+ K1 + K2) , where K - K T and K = KI Tare stems from the potential energy

and the centrifugal forces respectively, and K2 is an antisymmetric matrix. 1
The parameter p is usually referred to as loading parameter in mechanical

system. The term f(t) and g(t) represents the time dependent stochastic

perturbations. Moreover, the matrices D1 , D2 are some nxn constant matrices.

It may be noted that the unperturbed linear (-O) equations, when both D and

K2 are identically zero, represent a conservative gyroscopic system which has

been studied by Sri Namachchivaya and Ariaratnam [5J.

It is convenient to transform equation (1) into a vector form of 2n- I
dimension. Putting

(0 A) 5 A
A [ 2nx2n _Ci2nx2n [ 1j2nx2n

I
s - and x -

2nxl 
2nxl

I
now equations (1) can be transformed into

Rx - SX + E Qx f(t) + e s g(t) (2) 1
It may be noted that R and S are chosen so that they are symmetric when A, B

I
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I and C are symmetric. In general, the unperturbed system Rx - Sx, has 2n

eigenvalues, some of which are complex conjugate pairs

A -6 +N+ j  - ,J = 1,2 .. N and the rest may be real

I eigenvalues A2N+j ' j = 1,2..m, such that 2n - 2N + m. It is obvious that

when all the real parts of the elgenvalues are negative and large, the

I unperturbed system will be asymptotically stable and the small stochastic

perturbations, I.e. f(t) and g(t) will have negligible effect on the system.

However, as the loading parameter, w, varies and reaches a neighborhood of

certain critical value, some of the real parts of the eigenvalues approach

zero and the modes corresponding to these eigenvalues are sensitive to small

I perturbations. In this paper, the effect of stochastic fluctuations on linear

nonconservative system (2) undergoing a "flutter" type instability is studied.

I Consider the system (2), it is assumed that at v - pcr the system

contains M pairs of noncoincident pure Imaginary eigenvalues with no resonance

i.e. n 1W1 + n2W 2 + .. nM * 0 (nn w 0, integers), and the remaining

elgenvalues have negative real parts. To study the behavior for small

derivatives from 1Aor' let P -ur + n, and the unperturbed part of equationsI
(2) is brought to the simplest form that has a minimum coupling to this end,

consider the transformation [9]

- T  , Y _ [U Y V] (3)

I C-[2cl 2d' 2c2 , 2d 2  . a2N+l .a 2n]

I where U, V and W are 2M. 2(N-M) and m - 2(n-N) dimensional vectors,

respectively and " consists of column vectors that are the real and imaginary

parts of the elgenvectors a - a + Id of the direct eigenvalues problem.

Furthermore, for convenience, the eigenvectors have been ordered such that the

first M eigenvectors correspond to the oritical eigenvalues. Substituting (3)
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into (2), and premultiplying by the adjoint eigenvectors

D [e 1, - e2 2 2N+l 2 I

Db-,.ef.bbfl

where b is the adjoint eigenvector given by b = e + if and = ij I
yields

A U + E[K°U + M1v + M2W~f(t) + cs (1)g
(t )

S= BV + E[N U + LV + L2W]t(t) + Cs 2 )g(t) (4)

C W + E[N2U +
pI V + P2w]f(t) 

+ cs(3)g(t)

where A_ = diag f J j = 1,2 .. M

BO = diag - j M+1, M+2 .., N I

C - diag [- al' - 2 - m] I m = 2(n-N)

NI L1 L2  - D QC , - (n)

N2 p 1 p 2

and the matrices K, L, M, N and P are explicitly given in Appendix A. Using

the transformation, V - T Z

where T - [diag ['Os w1jt) sin(CwtJ 3 j a M+I, M+2,...N

si(Wit) cos(W t)01

the system (4) is transformed Into the form as

I

I
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U2J-1  -w iu2 j - i r [K 2j 1,2k-1 U2k-1 + K 2i-1 2 k u2k]

N -M UOS -J1 2 - " M~k 2..l 2k i l SM+kt)) k-

kal

+ m1in(Wa t) + M co(W t))z IIJ12kl M+k 2J-1,2koo M+k 2k

I~ ~ 2 Mjkk1~ (1) +2 U
k 2-~ w c~t S 2J1 g(t) +cA 6 1 2J-1

2J j 2j-l 1Z k J-ik1u2- 2J,2k u2k] 5

+N-EM (osMw t)((.2 m in(W t))z
k- J,2k-lo( M+k 2J,2ks M+J. 2k-1

+ (m 1  sin(W t) + com t)32J,2k-ls M~k 2J,2koo~ M+kt)2k]

+ r [m2 w k]ft(t) + Es2 (1) + cA1u2j U. -,2.I ~k-i1~t

Z -Z + i £ ( 1  cswt) - N1 Siri(w W)u
2r-1 -6r 2r-1 elZ[N2r-1,2s-l1 s~m~r 2r,2s-1 M~r 2s-1

+ (N r 1 , 2 cos(w Mr t) - N 2r,2ssin(W M+r)Wu 2s]

+ p~)( t)+* (2)(w)}t)
2r-1 2r-1 -

I £(S~2r-1S~ M+r) - 2r M+r gt

Im Z -Z + ( 1  sin( t) + N1  cos(aj t))u
2r aar z2r +eE N2r-12- HWMr 2r, 2s-1 M+r 2s-1
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si(W t)+ N 1 cos(W t))U]
2-,s M~r 2r,2s M+r 2s

+ 2r -  + 2r

"r[ (2) sin(WM t) +5(2) cos(W t)] g(t) r - !2,...N-MI
+ L2r-1 M + S2r , ,,

where
(1) = -ILI , (2) -1 TL2w
* T L TZ , T LW.. I

-i + i i, 2L-1 + 2

+ 5(1) (Z't) + _(2) (W't)j f(t)I

+ C S(3) g(t) , 1 = 1,2...m

where -(1) = p1TZ , (2) 2 I

the first 2M equations are critical and the rest n-2M equations are

asymptotically stable, i.e. 6 r >> 0, a >> 0, r - 1,2 ...... M-N and I =

1,2.. .m.

In physical systems, the excitations are real noise processes and results

under the assumptions of white noise excitations are not directly applicable. I
However, for excitation processes with wide band spectrum of nearly constant

spectral density, the equation of motion may be approximated by a set of

equivalent Ito equations whose solution Is a Markov process and satisfies the 3
Fokker-Planck equation. The results obtained may then be applied to certain

real physical systems. This approximation is made by applying the method of 1
stochastlo averaging to a set of equations in "standard form" that are exactly

1



IA-7

I
equivalent to the equations of motion (5). Such equations in standard form

are achieved by means of the transformation

U2J1 - ajsin$j , U2j - ajcos4j (6)

$ j * Wjt + j , j - 1,2,....M

Substitution of equation (6) in equation (5) yields a set of 2n first order

3 equations in a, t, Z and W in the form

a. = 0[F (a) + Fj(a,t,Z,W,t)f(t) + Gl(t,t)g(t)]

C[ +,,,~tft Gji tJ(t)J/a j - 1,2 ... M

- - 6+ [ 3 + G 2 1 (t)g(t)] (7)2r-I r 2r-1 2rF3 r-

Z2r -- r [Fr(a'Z'W't)f(t) 3 G (t)g(t)] , r - 1,2,...N-M

-akW + c[F (aZWt)(t)+ G(t)g(t)] k 1,2...m
k k k k k

Iwhere

1~F = x(0)(a¢t (1 (2)
F X (a,,t) + (Z,O,t) + Xa (W,O,t)
j a a a
1 (1) 31nt + s(1)C03*j

G = sI sn$ s cst~j 2j-1 j 2J '

2 (1) (1)

3 - X(0) (a,(,t) .(1) (Z,t) .(2)F2r-I Z 2r- a + 2r-I + 2, (W,t)

G~ r I  (2 ) eo ~ M r ) . (2 )

U 003)O~(wM t) 3 s~sin(W ~t)2rI 2r-1 MSr2r si~M~rt

i

I
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F3  a X(0)(a*,t) (1)(z't )  -(2) , I2r " x2° (Z t) + 2 2r ,t)

G a3(2) sin(W t) +S( 2)cos(W t)I2r 2r-1 M r 2r M' r

F40(0) -(1) +-(2) Nt
k X( (a,$,t) + (Z,t) )(W,t)

G 4 s(3)k I  k i

the matrices are explicitly given in Appendix B.

III. Approximation to Marker Process

An exact solution of Eqs. (7) for arbitrary random processes f(t) and 3
g(t) Is not available. However, if the intensities as well as the correlation

time of the processes f(t) and g(t) are sufficiently small, using a limit I
theorem due to Papanilolaou and Kohler [7,10], the solution process

{a(t), *(t)) may be approximated in the weak sense by a diffusive Markov

vector process. It is then possible to solve for the response amplitudes. 3
This method of approximation, known as stochastic averaging is analogous to

the ordinary averaging method of Bogoliubov and Mltropolsky [11] for the 3
deterministic case.

By making use of the formulas of Appendix C as shown in Papanicolaou and

Kohler [7,10], one can obtain the drift and diffusion terms, however, 3
evaluation of the drift and diffusion coefficient defined in Appendix C Is

long and cumbersome. Bypassing some of the algebraic details, drift and 3
diffusion terms are given as

ar ar  +2 3ar  2 2 (

A6 a + - S (0) + -6 JH,rr)Sff(2Wr)
r r 8 1,rr ff(  1 1,rr

2 2 I
+L (1 1 2)s ()

~4ar 2r-1 +32r gg r



M a 8 2 +J2

3r16a r ,rs 1,r3 ff ~r 3

IH 2 2 (W -

3 a( 1 ,rs +1,rs3 Sttf r 8)

+ ( -(H + H +j + j )s (w ~w
sr8 l,rs 1,3r 1,rs 1,sr ff r s

- H- j +)+ s (W -w3 ~1,rs 1,sr 1l,rs 1,sr ff r

+(H-if + H .3 ) + *I1,sr 1,rs 1',rs I,sr ft r -

Is 1,Hi s1,rs 1,sr (Wr +

N-M a +4 +
E -- [ r(H H +~ i w
S18 L2,rs 3,sr 2,rs 3,sr ff r M+s

(H- H-+ 4. (

2,rs 3,rs 2,r5 3,sr rf r M+s

+ (H- J+ + H +3 )(W -

3 ,sr 2,rs 2,rs 3,sr ft r WM+s

3-(H 3sr i 2rs -H 2 Jr i3 ,s)WP(w r +W M+SXi

m a 2 22 2

2 2 N

m 2~sN , r- m2r-1,s Ns,2r f(rA

Im
r
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(H 1 2 2 )# (2
(H~rr Ji~rr ff(2r)

K +
+ Z 1 (H1 srr -H j )sr(w + w

8 1,sr1,rs ,rs 1,rf
ssr

+ (H- J+ +H J )S (w w)
I ,sr 1,rs 1,rs 1,sr ff r s

-(H+ H +J J ) +( W
1,rs 1,sr 1,rs 1,sr ff r sI

+ H - + + (WI
1,rs1,sr 1,rs 1,sr ff r -

1 N-K r +(H + J ~ ) w*A
+ (H 2,rs H3,sr +j2,rs j3,sr C*ff r M+s)

3=1

+ +H H- (W I
~~2,rs 3,sr 2,rs 3,sr ff r WM+s

+ (H- J+ +J + s (W -w M+)
3 ,sr 2,rs 2,rs 3,sr ff r Ms

(3,rs i2,sr -H2,rs i3,sr ) fft r +WM+s

E [M~rl~sN 2 r- 2r,s Ns,2r)~ff(W r)

8 m2~ 2r-1, sm2r-1 +M Ns2  j fWd

Ic ia a

31 2+312 a r2 22r-1 2 2r Sg (W +. + s (0)

2 H + 2 s (2w)
8(Hr I,rr ff
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I Ma 2 2 2

+ sr 3 [(H+r + J- )S (w +*

+ (Hrs + i,rs~ Sftt r

30 [T] a a

a3 as3 + +S(0
4 1 , rr ss ftf

I+ a (H+ 8 H + j lrsis S~(wr+

a as H H-J + +)s (W -

8 ,rs 1,sr l,rs l,sr ff r s

a
r H- J + S (0)

T4 1,rr 1 ,rr tt'

[oTi

a
rH~ J4 + s (0)
4 l,ss l,r'r ff

F 1,H~sri 1rs +Ht,rs 1,sr) SfT(r 4. - 4

a +
+ ~ -H+i H J )s (w

8 1,3r 1,rs 1,rs 1,sr ff wr

1 2 52r-1 + 3 2r (

3 Srr f(O) + 2&r 2 sgg' (wr
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4- H 1 ) + ~ r-S2
8 1H rr lr (2w r

M a 2 2 -23
+ z s [(H.  4. . )s (W +

s4 r 8a 2 1rs + 1,rs ff r s'

2 1 2

s~rB

8 1,rs s 1,rs 1,sr ff r

I 1,rr J1, 2k 2Jk- - I k 2,k J12

H -J N 4 )1 ((h 1 I
8 ,rs 2r1,r s r,2sr1 ' 3 rs 2r2 Sr12-

0 -6 
0 

T
1,jk(W - 1 2,2- 1,jykeCSWd

1 1 

Srr(W) -2f 0R ff(T)oewrdr , (w , 2f R1 . (T)Sflwt ,

ff M(i - 2fo RffT) e-1 oswidT , I-12..N
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2f a a)e-

ff(w) - 2 T) e sinWTdT . J - 1,2,...,m
0

I IV. Stability Analysis

3 When the excitation is deterministic, the concept of stability is the

usual Liapunov concept employed in the theory of stability of motion, while in

the case of stochastic excitation, a definition of stability must be

introduced. There are several definitions of stochastic stability in the

literature but most investigations have been concerned with only two types;

3 namely, stability in the moments and almost sure or sample stability. In this

paper, we shall examine only the moment stability of the trivial solution.

3 The trivial solution a - 0 of the system

3 a - F(a,t,n(t)) - 0 , F(o,t,n(t)) - 0 (8)

is said to be asymptotically stable in the nth moment if all joint moment of

order n of the component of a are bounded in absolute value for t Z 0. For

n-1i, the trivial solution is said to be stable in the mean. For n=2, the

trivial solution is said to be stable in mean square.

3 A suitable norm Ily(t)II of the state vector in the critical mode u is

defined and conditions are derived such that E[Ijy(t)j1 2] remains bounded for

I t tending to infinity. The norm of the solution vector U is defined by

IMl 2 2 V/2 M 2 1/2
l I r U 2 r-1 - [ r a]'
y -r-1 r-1

so thatI
ly1] M 2 M

E[I - Z E[a ] - ER

iYI r-1 r-1

I

iI



A-14 3
where R (t) denoted the second moment of the amplitude ar. Hence, 3

E /[lly, 2] _. 0I Mr -o , r - 1,2,...M

By using the Ito differential rule [12J; namely, If &(a,t) denotes any

twice differentiable scalar function of a, t then the corresponding 3
Ito equation for &(a,t) is

. .M
L()dt dw ()

i= u ij 3ai

where L(.) is the differential operator 3

2 n 2 1 n n 21 a 2L(-) = .)+ E Z M - + E r [CFo T

i-I a a 2 i- ij aaa (' ) 3

and wj(t) are mutually independent Wiener processes. Taking the expectation I
of both sides of Eq. (8), the differential equation governing the expected

value of & is

Idt

since the wj(t) have zero expectation. Thus, setting & - a2 linear,. r
differential equations are obtained that govern second moments of the

amplitudes as 3
dM
dMr . m +C2Ti2 

m10
d-'t- r 0 a a s2o T Z A M( 0

ar r _rr s-1 rs s

where the coefficient Ars are given by m

A 1K S()+1 K S (2w)
Ar 2 1,rrStf(O) 2 2,rrC r

I
..... .... ... m
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M

+ I E [1C5  S. (a) .C S (a-)4 sr[5,rs ffC rs) -6,rssfC s)

+ 7,rs*ff(nrs) - ICrs*ff(grs A

SI N-M
4g Su [K9rssfr,.M~s) -ElOSrssffMQr.M+s)

.l [9,rs ff rM+s 1 0,rs ff )]

I,+ IZ1 3,rsff (r ) - 1,rsIff((r)]

I
+ 2A6 (11)

A [K C S ,+ , r-s; r,s = l,2,...M (12)rs 2rs ft rs ~4,rs ft rs

where the quantities K i=1,2,...1 are defined in Appendix D.

Thus, from Eq. (10), necessary and sufficient conditions for stability in

i the second moment are that all eigenvalues of the matrix A = [Aij] have

negative real parts. These conditions may be found by applying the Routh-

Hurwitz criteria to matrix A.

3Z If the excitation has a broad-band spectrum with a constant spectral

density Sop over a wide band of frequencies, i.e. SffW() - Sff(W) - Sff (W)

SO and *ff() = ff(W) ff (w) - 0, then the matrix A remains a full (no zero

elements) nxn matrix. For multi-degree of freedom systems, the Routh-Hurwitz

Iconditions Involve computation of determinants of large matrices, which is

3tedious. Thus, the stability conditions for M-2 can be written as
A1 1 * A22  0

I
SI

-,- r r ..-
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A 11A -A A12A21 < 0 (13) 1
It is evident from Eqs. (12) that c2, rs and c4,rs are positive 3

quantities, implies A12A2 1 > 0, thus, the stability conditions of Eq. (13) can

be simplified to 3

2AS + S ( 1<0 (14)1

2tA6 2 + S oa22 <~ 3
So02 C 1 L 22 - 8) + 2So0(66 1 a22 + 46 2 al 1 + 446 1A6 2 > 0

where

a _ ( + + (I
all 2 1,11 2,11 4 5,12 6,12

I N-M 1 m I
4 r (.C9,1S - 10,1S) + E s K 13,1s

'22 2 2 (<1,22 2,22  4 5 21 - "6,21I

I 
EssN-M m

4 r (I 92 - K102 + E K 132

1s=1

16 (I 2 , 1 2  4',12) (' 2 ,21 +''4,21)

Returning now to the M-degree of freedom system, some particular forms of 3
excitation spectrum S(w) are considered, whose values are small everywhere

except in the neighborhood of some wo; i.e. S(w) vanishes outside the I
bandwidth w - 1/2 wo < W < Wo0 + 1/2 Aw . The correlation time of such a

stochastic process is 0(1/Aw0 ), while the relaxation time of the amplitude

process is 0(1/c 2 ). Therefore, if awo >> C
2 , the Markov approximation I

obtained by use of the limit theorem will remain valid. In the following, I
I
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cases in which wo 2Wr and w0  1 s ± Wri' r,s - 1,2...M are consiaered.

UAlthough dealing with a multi-degree of freedom system, knowledge of the

frequency content of the excitation can simplify stability analysis.

Taking w o - 1wr ± ws ' (rss), it is evident that off-diagonal elements of

the matrix A except Ars and Asr are identically zero, i.e. Aij - 0,

i,j * r,s, i*J and Aii - 2A6i, i * rs. Furthermore, if wo 0 2wr then all the

off-diagonal elements of matrix A are identically zero; i.e. Aij 0, 1 0 J,

and A , I = r,s stability conditions for w 0 wi + w can be written

1 as

Asr  8 5,rs ff rS

U 8 5,sr Sff rs) < 0 (15)

1 2 +* (

6 Sff 'rs 5,rs'5,sr - c2,rs 2,sr

1 Sff(0 )(As 0C + Ad s+ d 6 A 0
8 rs{. r 5,sr s5,rs rs

Similarly, if Wo - Iwr - wsl, r*s, the corresponding stability conditions are

r - 8 6,rs t r < 0

31 1 S (- < 0 (16)

s 8 -6,sr ff rs

I S 2 (- )1c ,s 6  "(
64 f S f sc6rs ,sr - ,rs4,sr

I f1 r r4,3r + 34 6rrs >

I
I
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Finally, taking wo a 2w r , the stability condition is obtained as I

A6 + 2rrSff(2Wr) < 0 (17)

It may be noted that the stability condition of Eq. (17) can also be obtained 3
from the inequalities of Eq. (15), since K5,rr ' K2,rr"

V. Application: A Cantilever Column Subject to Stochastic Follower Force 1

In order to illustrate the general results obtained previously, we

consider a cantilever column of length Z, mass per unit length m, flexural

rigidity ET, and with a stochastically varying follower force p(t) = p0

+ ef(t) as shown in Fig. 1. Equation of motion and the boundary conditions

are shown as [133 U

E I - --'- + E I 4+ m -  p 2y + c - 0
axa t a 2 x2 a t

y(o,t) = a(o,t) 0,

a2Y(t~ a x

ax2  ax3  
0

where E* is coefficient of internal dissipation which is assumed to be Kelvin- 3
Voigt type and c is the coefficient of external damping. Now, defining the

dimensionless quantities

x j ?=1 /E t I 1 /2 E

ct 2  3 t.P Fi
(Elm)'/ EI 0I

The dimensionless equation of motion is obtained as I
I
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I
i 5n  + 4n j~n + a 2a0(8

aa& 4 arBE4 BE2 B- 2 3-

Iand the dimensionless boundary conditions are

I a~ n  
3n

n -- m0 at E -O0

a 2 3n . 0 at = 1.IE a 2  aO3

This problem was considered in a different context by Wiens and Sinha [14] and

Parthasarathy and Evan-Iwanowski [15]. The discrete equations of motion

3 corresponding to Eq. (18) are obtained by using a two term Ritz-Galerkin

approximation as

I + B + * C g = cD 1 F(T) g

where the matrices B, C and DI can be written explicitly as

I B = [2-30.8P, = o 117P

0 485.52a, + 8 1.87P 0485.52-13.29P 0, .-8 6 1 1 -7
DI 1.87 13.29

The characteristic equation of the system (Eq. (2)) is obtained as

A 4 + (497.881a2B)1
3 + (497.881 a2 + 497.88 aB + 6002.1602

- 12.436P0 )A 2 (12004.3a + 497.8810 + 252.345aP0

- 12.4360 P ) A + 6002.16 + 10.595 Po 0 , (19)

I
I
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and from Routh-Hurwitz criteria, the governing equations for stability are I
a, >o > 0
(112.27482 + 55898.9c8 - 4.25255 10 6a) - (7.541 108 a4

0

- 2.842 107a38 + 2.855 106a
282 + 8.039 107a2 

* 18070.3a 83 + 6.668 106 a + 24.8720 4 13392.782 )P1

+ 3.587 1010a
4 + 4.608 109%38 + 1.473 10 8a 2 I

+ 1.344 109 a
2 + 767666aB

3 + 1.115 108 a8 + 995.76284

+ 22387782 > 0 (20)

In an earlier study of the deterministic problem, Lelpholz [13] concluded that

rods subjected to external viscous damping does not affect stability and can,

therefore, be neglected. From Eq. (20), the critical force in Fig. 2 is not 3
affected by the external damping for the case of internal damping a = 0.

Leipholz also showed that for the clamped-free rod, internal damping must 3
always be considered and has a destabilized effect. In Fig. 3, the structure

with internal damping, the smallest flutter load turned out to be Per = 10.68, 1
which is less than Per = 20.1 in Fig. 2. Consequently, in this paper we shall 3
only consider the system with internal damping (i.e . a 0 0, 8 - 0).

By using the transformation matrix C and D mentioned previously, one can

show that the system has one pair of purely imaginary elgenvalues at the

stability boundary in Fig. 3 and bring the system In the same form as Eq. 3
(4). Now, the results of the last section can be readily applied. 3

Numerical calculations were done for different internal damping a. It is

evident from Eq. (14) that the stability condition for the second moment of 3
the linear system can be written as I

I
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A1 0 4o 1 (,11 2,11 8 9,1, 10%,11 < o

3 the numerical results obtained are plotted in Fig. 4 which also shows the

effect of internal damping on the stochastic stability boundaries of a

cantilever beam with follower force. It can be seen that the stability

regions reduce with decreasing value of internal damping a. Furthermore, as a

approaches 0, the whole region in the parameter space (AP, S0 ), where

I -(or - P)/Fcr' becomes unstable.

VI. Conclusion

An analytical method has been presented here for studying the stability

of linear nonconservative multidegrees of freedom system subjected to

stochastfcally varying excitation of small intensity. These systems are

3 typically encountered in the study of the dynamic stability of elastic

structures under random loads.

IThe equations of motion were first transformed into 2n first-order

3 equations in the amplitude and the phase variables. These quantities, by

using the method of modified stochastic averaging, under suitable conditions,

converge to a Markov vector which satisfies Ito equations. From the Ito

equations, criteria for mean square stability were obtained, with the aid of

Ithe Routh-Hurwitz criteria. In analogy with the deterministic results, it is

found that only those values of the excitation spectrum near twice the

system's natural frequencies and the sums and differences of the natural

frequencies influence the stability. As an application, the stochastic

stability of cantilever columns with stochastic follower force was considered.I
I
I
I
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Appendix Al 1
The matrices K° , L, M, N and P are explicitly calculated using the

eigenvectors and the matrix Q.

I 1 1
K(, M, N and L are the partition of [ ]

K0 . ] [a I ji - 1,2. .... M
J2Mx2M J M1,2...

2Mx2(N-M) j - M+I,M+2,...N

N1 [alI , 1- M+1,M+2,...N I
2(N-M)x2M J - 1,2,...M

1 i M+1,M+2 .. .NJ-M+1 ,M+2,...NL1 " aJ2(fN-M)x2(N-M) 1 +,+2..

M2 and L2are the partition of' [B 1j

M2 1 i - , . .

N 2Mxm j 1,2 .. m

L 2 1 [8i -:+,+ ... NIj2(N-M)xm J - ,2,...m

N2 and P1 are the partition of [YIj1

N 2 - [~I { - 1,2... m
mx2M I 1,2...M

P 1 it - 1,2,...m
mx2(N-M) j - M+1,M+2,...N

2  ] I -,2 m
jmxin J - 12..

I
I

ll---lll.-. 1Ul llIIl ll llI
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where

DI Qij iji
DQC= p ijJI

(fi) TQ WT Q- )Q

ij 2 (_E)TQ cj i - (-fi)T QI~~~ 2x ' Iifi

I Y * 2 [(PJTQ gj (Pi)TQ gj] lx2 ' ij =[(Pi)TQ 4 i] lxl



A-2 4U

Appendix -

The matrices X MX andMardeidasflo
a ar einda tlo

(0) +. + H i2X a (a.*,t) " a i 1i+ J ,jcoS2$P + H jsl2 3

N1M + )( - 0~ ) j~~ + k- (0
2 k[J k l#k j k1jkcosi k

sn( - ) H + sin(O + 0
1,jks J k 1 jk j k

X(1 ) '(Z, ,t) = - M rZ (j + sinO - InO
2.k2 2k-i 2,jk .1 2,jks j

k.1

- 2 k' j2,jk j s

N-N + 4

+ z (H- inei +H 2jS inO
2 k1 2k 2,JkS j 2j

'J 052,Jk Js 2,Jkco j

(2) ) . 1 (N 2  inti + I
X a(W,,t) 2 r Wk2j-lks. 2j,kcos

X (0) (a,*,t) - j a (H- + H1 + cos20 J - in2O
2 1,jJs

M a k 4.H o(4 + 0

+ko - [ 1 ,j kcosj - k IJ

1 uaji

X ( ,t r-H (i4  cost - 3 es
X (,,) 2 ka Z2k-1 2,jk j 2,jk c I
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+ + +
+ 2 jk 3nj H2,jk si;

N+ 2 E z2 k (H 2 lkostj + H 2 ,jkcOS;j

S2,,jk3 jn 2,jks Jn

(2) m 2 2os-M snX (WCO~t - z wk (m jlko01 m 2jk n

(0) M a+
x (a,O,t) - Z H 0059oO + H 3,scost

3, 2 3, rs s 3r

x (a,*,t) E -1 (H- io+H sn

'zr 2o~ . 3,rs rs ,r

(0 a (N2  sinO + N cost

where

it (W W ) +33 M+r s
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Appendix . l
The drift and diffusion terms can be obtained by applying the followingI

limits directly to equation (7).

M f E < F + F2  > R C¢)a- t F. a I i T  a3l ,1 f

i. < aa i ,T + a¢ G T a¢ l, T f1 1

M 3GG

2 < j G > R (T)

+. 4 < F1 T + Zr 9z ,-

r-1 2r-1, r rT Ow f

+N-M 9F1 aF 1 I r 3
* < j- G + G > zROwrOg )e

r=l aZ2r- 2r-1 32 2rT I
m F 4  T

+ I < aw F >1z R (T)e

I Ik-1 aw k kt T _O W-O f

m 4 R (r)ek] k T
+ r < !w Gk > + F0

k, 1 z-Ow-O t

I
I
I
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I *,in4 If [ r -F 2  -F >R T

I a.1  i I i, T 3,iT

*2 222

r G + L~ > R (T)
i.1aoi I aa. T~ gg

IN-M 3F2aF 2

+ j F F3 >R (r)e r
, 2r-1 ,- azr 2r,t T -O, f

r.1-N~r 2r ,r>I

r. 1 2r-1,T aZ 2r 2r z= O,wno

+ E <! F4 >R ( ek

kal aw k k ,T lz-Ow-O f

+ r T> Rtg(T)e jldTl
k.1i k k, z=O,w-O f

ml f (<rpiFT > R ff(T) + < I * ,jT fST
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[oT]a I

M{ F 1 FF2 >R ()2 G IF2 > R (T)
I * j ,T ff I j,T i j,T fgt -" I

+G <G (T)] dii
IGJ,Tr Rgg

[cc [<FM I Fj, T  + <F2Gj t + GFj, >R fg(T)
i j t - j 1

+ <G2G2  > R ()] dii
I j,t gg

where F C)T F(.,t+) GC) = G(, M is the averaging operator I
defined by

M() -Lim T T (-) dt
t T-o 0

Rff(t) - <f(t) • f(t+T)>, <'> denotes the expectation, and in evaluating the I
expectation in Eqs. (7), a and * are treated as constants. Then (a,) in

Eqs. (7) can be uniformly approximated in the weak sense by a Markov diffusion

process having drift vector m and diffusion matrix [ooTi.

I
I
I
I
=I
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I Appendix -

3The quantities Kip 1-192..15 are defined as follow:
K4 2 Ic 0j + +

I,rr 1,rr 1,rs 1,rr 1,ss

-cH + + -2 K -'H + + -2
2,rr 1,rr 1,rr 2,rs 1,rs 1,rs

-2 + 2- 
4

Ic -H + -H
3,rr 1 , r ,rs3s ,s1r

K + + +

5,s ,rs 1,sr 1,rs 1,sr

PC6r -H H -J 1

6,rs 1,rs 1,sr I ,rs I,sr

K H J + +H-
7,rs 1, sr 1 0rs I ,rs 1,sr

KCr -H +J - - H +Ji
8,rs 1 tsr 1,rs I ,r3 1,sr

c -H H + J-J
'9,rs 2 ,rs 3,sr 2 ,rs 3,sr

-c H H -
10,rs 2,rs 3,0sr 2 ,rs 3,sr

K -H + j -H + J-312,rs 3,sr 2prs 2 ,r's 3,sr

4. m 
+ -

13 r3,sr s2r- 2,s 3sr

KI m 2 N2
14 r-,s , 2r-1 2rl,s 9,2r

KI 2 2 52 2

15 - 2r-I 2r
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Introduction 1
There exist several natural phenomena that var y in a random mnrner due to

the effects of large numbers of unknown factors. Dynami systems in such

environments are subjected to stochastic exiitations. The stability and the

nonlinear response of such stochastic systems have become of increasing

interest in engineering. Examples of stochastic excitations Include forces1

generated by Jet and rocket engines in modern high-powered aircraft, space and

missile structures, as well as excitation due to earthquakes, ocean waves and

wind gusts. They fluctuate randomly over a wide band of frequencies and have

to be considered as stochastic functions of time defined only in probabilistit

terms. The effects of such fluctuations on nonlinear systems have been

st:died by various researchers. For one dimensional systems, Horsthemke and

Lefever (1977) and Arnold et. al. (1978) established the existence of

transition or bifurcations solely Induced by noise. These Ideas were extended

to two dimensional systems by Arnold et. al. (1979) using the well-known

Lotka-Voltera model for two Interacting populations. The effect of stochastic m
perturbations upon a dynamical system exhibiting co-dimension one bifurcations

has been studied by Baras et. al. (1982) Graham (1982), Lefever and Turner

I
1,
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(1984) and the author (1988a,1988b, 1989). The effect of additive noise was

considered in (1982), while the effect of multiplicative noise was studied by

Graham (1982). The author (1988b,1989) considered a more general problem in
nR with both multiplicative and additive stochastic excitations. Even though

a large amount of work in co-dimension one stochastic bifurcations has been

reported, there is still .onsiderably more work to be done in stochastically

perturbed co-dimension two bifurcations. The goal of this paper is to present

the results pertaining to the statistical as well as the sample behavior of

nonlinear systems that exhibit a parti-ular co-dimension two bifurcation and

subjected to random excitations.

A dynamical system undergoes a co-dimension two bifurcation due to the

presence of additional degeneracies other than those encountered for the

simple and the Hopf bifurcations. Such degeneracies can be classified into

two types, in the first the linear part is similar to that of co-dimension one
bifjrcation but additional degeneracies occur in the nonlinear terms of the

normal form or higher order degeneracies occur in the linear part, and in the

I second the linear part of the vector field is doubly degenerate. In this

paper, we shall consider the stochastic version of the co-dimension two

bifurcation of the latter type. There are three cases of such types of

degeneracy with two, three and four dimensional center manifold where the
linear part can have: 1) two zero eigenvalues, 2) a pair of pure imaginary

eigenvalues and a zero eigenvalue and 3) two pairs of pure imaginary

eigenvalues without 1:1 resonance, respectively. For a deterministic

symmetric system these are represented by the following three cases which

depend on two parameters p and )2:

I (1) Double zero, nondiagonalizable eigenvalues

2 + uP x2  I x ± x3 = 0 . (la)

(2) Simple zero and pure imaginary pair of eigenvalues

1 r + arz + (cr3 + drz 2 ), z . P2 + br2 - z2 + (er2z + fz3). (Ib)

(3) Two pure imaginary pairs of eigenvalues without resonance

I
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r3 2 212 3 I
rl = url+ a11 r1  +a 12r1 r2  , r2  + a 21 r1 (+2)

The detailed analysis of these cases with various classifications and

unfoldings are summarized in Guokenheimer and Holmes (1983). For simplicity,

in this paper we shall restrict our attention to the stochastic version of

case 1, i.e., double zero eigenvalues with non-semisimple forms as in Graham

(1987).

Statement of the Problem

Consider a co-dimension two bifurcation associated with norsemi-simple

double zero eigenvalues, whose center manifold is two dimensional and the

associated normal form is given by Guckenheimer and Holmes (1983)

vI
(2)

11 1 lU  + ;2 v  ± u3  _ u2 v

where p and w 2 are the unfolding parameters and pI = P2 = 0 define the co- I
dimension two singularity point. We are interested here in the case

where the normal form is perturbed by weak Gaussian white noise and

we assuime without proof that the associated normal form is obtained by

letting P, = Wo(1 + 1 'l (t)) and by introducing an additive noise

term E n2 (t) In the second equation. It is worth noting that the influence

of additive noise for this case was also considered by Graham (1987) and as in

his case the emphasis will be given more to the bifurcation behavior as

opposed to the derivation of the stochastic normal forms. Moreover, since the

normal form for this case represent the van der Pc1 - Duffing oscillator, the

problem below, given by equation (3) can also be viewed as van der Pol -

Duffing oscillator under both parametric and external excitations. Detailed

analysis of the stochastic normal forms for various nonlinear stochastic

systems have been given by Sri Namachehlvaya (1989). Thus consider

uv ,

- UU + P 2v ± u 3 - u2 v + E 11 2 ,Oun1(t) + n2(t)] (3)

I
I
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I
For the linear equation, since the stability is not affected by the non-

homogeneous terms, the following set of Ito equations is examined:

I= Bx + a x dw

where

Ix = (u,v) , B 1 ~ 2] u = [0 0JI

and the excitation term is pon(t)dt = vdw. The almost. sure asymptotic

stability condition is obtained, using the approach of Khasminskii (1967), by

examining the Lyapunov exponent ., For the above equation, the value of A can

be obtained in the same manner as in Kozin and Prodromou (1971) and Nishioka

(1976) and is explicitly given as

= f Q(e)p(e) d8

where 0

2 12 28

Q(e) 1 ( ° + I 6 cse sine + W sin 2e + v cos e cos2e
0 2 2I
C S(-i/2,e] - n/2 e < /2

Ip(O) = v2cos 48 s(e)

p(e-Ir) w/2 1 8 S 31/2

I
S(-i/2,e) - f s(&)d& , s(&) 1 2 exp (tan (f(&))]Ii 1 2 Cos2 3v2

f(&) = 2tan 2 & - 3)2tan& - 6m°

i and C is a normalizing constant. If A is negative, the sample paths are

stable with probability one. However, in this paper our attention will be

focused on the analysis of the nonlinear system.

I



B-5

Analysis

It is obvious that for both ± u3 , the two dimensional system undergoes

stol-hastically perturbed so-dimension one bifurcations when the

parameters p0 and P 2 take the values 2  o, O, 0 = 0 (simple) and p 0 < 0

and w2 = 0 (Hopf) and have been studied before (Arnold et al., 1978; Sri

Nama-hehivaya, 1988). Thus, in this se'tion, we consider the bifurcations

3SSo:'iated with the reduced normal form whizh represents a weakly perturbed

-onservative system. Such a reduction is obtained by using the resealings

2 2 - 2- -
U0 = c vO, I2 = C v2 , u = cu, v = v , t = ct,

and hen.eforth omitting the bars from the scaled variables for simplirity, we

c'an redu:'e Eq. (3) to the form

du
dt

dv - u± u 3  - + C un (t) + (4)

d-- 0 [ 2  u 2[o

whihh .-an be interpreted as either a Stratonovihh or an Ito equation since the

2orreetion term is identically zero. Now introdi-ing H = v 2/2 + P ,2(u),Ls2I

P1 2 (u) = - V0u /2 ± u /4, G(u) = (v2 - u ), the Ito equations for u and H

can be written as

du - /Q ,2(u) dt

(5)

1,22'Q ,2(u) {Ur dwidH EjQ1,2 (u)G(u) F~u.,dt) +2(u 4)dwI

where

2 (01(u)) 2 , 01 . Vou, a 2 I
Q, 2 (u) - 2(H - P, 2 

(u)) ' F(u) - 2 I v
12122101 I
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In the sequel we consider only two eases, namely:

(1) H - v2/2 + pl(u), v < 0, and the fixed points are given by

(0,0) - stable and (± I- v0, 0) - unstable. The Hamiltonian levels of
. _• (2 _ H)/211/2

interest lie within H = (O,v /4) and u0 - + [ - 0 + (V - 4H

(ii) H v2/2 + P2 (u), vo> 0, and the fixed points are given by

(0,0) - unstable and (± v,0) - stable. The Hamiltonian levels of

interest lie within H (- v2/4,0) and u = [V ± ( + 4H)
0

Now applying -he theorem of Khasminskii (1968), we obtain the one

dimensional Ito equation

dH = A(H) dt + a HH(H) dw (6)

where

(H)

/QT(u F(}du = {3(H) + C(H)I) H 0  (,2 Q1,2 (u) A(H)
u (H)

2o

5/2
1(0 [5(v2/o 2m2 -4m 2 _ '+)Em)

B(H) = (,-) 12m )( 2m) (2 m)F~)

-2[5(v2 /Vo0)(2-m)(1-m) - (2-m)(1-m)]F(m)j

-- fsC(H) = 02-'-r°m V, 21)E(m) + (S22/2vo)(2-m)F(m)]

u (H) 2
-2 1HH
aHH(H) - ( '/Q1,2(u) 12F(u)ldu = A(H)

uI (H)

a2 ()(M -) 5 [5(S 22/Vo)(2-m)
2 + 4SV 2 (m2-m+l)] E(m)

I
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- 2[5(S 22 /V0 )(2-m)(1-m) + S11V 
2 (2-m)(1-m)]F(m)1

A(H) u (H) duCu) = 112 F(m) , T(H) = 2A(H)

u~H 0 (H) 1,2 V

v 2(rn-I) d)

H 0 12 and 2C(H) = d [ a 2

(2-m)2

In the above equations F(m) and E(m) are complete elliptic integrals of the 1
first'and second kinds, respectively. By solving the corresponding Fokker-

Planck equation the stationary probability density is obtained as U
w st(H) = const. exp{p} (7)

st I
where

ip 2f 5(H) dH + in (A(H)J
' 2(H)

The stationary probability density functions are shown in Fig. 1 for various 3
values of excitations. In Fig. la the parametric excitation is varied while

keeping the external excitation fixed and vice versa in Fig. lb. 3
Following the arguments of Stratonovlch (1963), the probability density

that the displacement u at time t given the value of H, i.e. p(u,tIH), is

proportional to the time a system spent at u knowing that the energy level

is H. Furthermore, the time u(t) spends at the point u is inversely

proportional to the veloity and thus

w(ujH) - ) Q 1u) and w(uH) - w(H) W(ulH)
TH 1,2(u
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U
and the density in u and v can be written as
I H(u,v)

I2w(u,v) = I-onst, exp [2 f fB(Y)/o 2H(Y)ldY]•(8

Ho
H

For the associated determlnistic problem, i.e. n( = =
0, alH/at = 0 gives c onstant energy loops su ,h as limit cycles and separatrix,

Iand the c-orresponding parameter values j° and w which satisfy B(H) = 0 ?an be

obtained for values of H E(O,Vo/4 )2 and irespetively for case

i (i) and case (ii). As before, the extrema of W(H) given by 3/MH = 0 denote,

so to speak, the continuation of the deterministi? constant energy levels or

the "limit cycles" and are given byI
2A(H)B(H) o (H) - ) = 0 (9)HH dH

I The stability of such limit .'ycles is determined by the sign

of (32 /a2H)H = H * These results are shown in Fig. 2, where the left hand

side of equation (9) is ploted against m and the most probable values are

given by point m.. In addition to these, the "fixed points" of the

i stohasti' system are obtained by solving 3i/au = 0 and 3i/Dv = 0, and their

stability is determined by the matrix of the second derivatives of 0.

Exit Time Problems

In order to examine the stochastic stability of the equilibrium points

from the Ito equation of the Hamiltonian H, it is important to determine the

domain of attractions of the deterministic system. Knowing the domain of

I attraction we can say that the stochastic system losses stability (w.p.1) when

the trajectories cross the boundary of this domain. In the sequel, the domain

I of attraction of the deterministic system is calculated for some regions in

the parameter space for the case P2 ( ,U) (v2 /2Ju u4/4.

It is obvious when v < 0 and v2 < 0, the trivial equilibrium point is

asymptotlcally stable and when v < 0 and v2 = 0, the deterministic system

i undergoes a Hopf bifurcation and stable limit cycle exist for v < 0

and v2  0 0. Similarly, when v2 < 0 and v0 a 0 the deterministic system

I
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undergoes a simple bifurcation and two stable equilibrium points exist

for < 0 and v > 0 . Furthermore, applying Bendlxson's criterion, i.e., if 3
the divergence of the vector field in R2 has a fixed sign (zero excluded) in a

simply connected region D in R2 the system has no closed orbits lying entirely

in D, we have (V2 - u 2 ) < 0 for v2 < 0 implying no closed orbits encir'ling

all three fixed points. The associated sto-hastic problems for Hopf and

simple bifurcations were discussed by the author (1988a,19 8 9). In this paper,

attention is focussed on the region v0 > 0 and v2 
> 0.

Every periodic orbit for the deterministic system must encircle one or

all three equilibrium points crossing the u-axis at (b,o). If b6(0,/Vo) then0I
the periodic orbit is a limit cycle encirclirng the equilibrium

point (/VoO). Due to symmetry i.e., P2 (u) = - P2 (-u), there exist another

periodic orbit encircling the equilibrium point (v-/0 0). Let the periodic I
orbit for the perturbed deterministic system be denoted as rE(blo oV2).

Along the solutions of Eq. (4) with n = n2 = 0, we have 3
= Cv (v2 ,u) (10) I

and since r (bv ,0 Vo2) is a closed path we also have

f Hdt = 0, i.e., F(bE ,v , v2J = f v2 G(v2, u) dt = 0 (11) 1

The function F(b,o,v 0' =2 B(b) may be written explicitly as 3
i(b) - 2ao (b,v) - 1 (b,v 0 ) (12) 3

where Jo v2dt and f v 2 vu2dt3,eo Jo v, o, 0 ,

Thus, the solution of F(b,o,v 0V2- B(b) = 0 is given by

"2 " 1 0 (b,v 0  (13)

Differentiating (12) yields I
I



I B-10

-_ (bo,vv) . o(b,v) s 0
3 22 00

i which implies, by the implLhit function theorem (IFT) that there exists a

unique Tontinuously differentiable function v*(b,E,vo) such

that F(b,Ev 0 ,V (b,EvO)) = 0 for suffi'iently small E and

v*(b,o,v) = -I(b,v)/50(b,v) (14)

Having shown the existence of limit cycle by IFT, we next proceed to list

3 various period!.2 orbits present in the region v2 > 0 and v > 0. However, it

is convenient to employ in plate of b another parameter H, which corresponds

to the energy level H = -(b2/2) bv- b2 /2). This change of parameters is
justified, sin'e aH/ b -b(v ° - b)is zero only at b = / -vo and 0, whi-h

are the fixed points. Thus, for HEo[- v2/4,0], making B(H) 0 yieldsIo
v2 (H,v) = JI (H)/J = R(H(m)) • v o  (15)

u (H) 1/2
U4

where J (H) = f (2H + vu - U4) du
0 u -(H)

0

- (2/3)Kv /(2-m)3/ 2 [(2-m)E(m) - 2(1-m)F(m)]

u (H) 4J (H) - f (2H + vou - M__)112 u du
v 0(H)

i = (4/15) [V0 /(2-m)]
5 /2[2(m 2 - m + 1)E(m) + (2-m)(m-l)F(m)]

and m 2(v 2  lH) 12/[v + (V2 + 4H) 112] , me[o,l]

I The following limits

11M v2 (H(m),vo) - v and llm v2(H(m), Vo) - (4/5)v 0  (16)

M + 0 m+ 1I
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I
agree with the calculations of Hopf bifurcation (local analysis) and saddle-

loop (using Melnikov integrals) respectively in the region v > 0 I
and v2 > 0 (see, for example, Guckenheimer and Holmes 1983). Furthermore, it

:an be shown as in Carr (1981) that the limit cycle encircling each of the

nontrivial fixed points is unique for H ,- v /4,0].

It should be firther noted that as the noise terms tend to zero, the 3
extrema given by equation (9) tend to the steady state solution of the

deterministic system given by (15). This further emphasizes the fact that the

most probable values are so to speak the continuation of the deterministic

steady states. The critical values of both equations (9) and (15) are given

in Fig. 2. However, in this paper the domain of attraction is obtained usirg

the critic.al points of the deterministic equation (15) whi'h are shown in Fig.

3. It can be seen that the noise terms lower the critical values. 3
Now that we have established the domain of attractions, we formulate the

exit time problem associated with the nontrivial fixed points in the

region v2 > 0 v > 0 and determine the probabilistic information concerning

the time T when the stochastic response process first passes out of a local I
domain of attraction of the fixed points. Since there are two simply

connected domains for HE[- v2 /4,0] we shall concentrate on the
0I

region v2[v0, ( 4 /5 )v 0 . Furthermore, for a specific value of v2 and v there

is a unique value of H or equivalently md[0,1i given by m = R- (v 2/v o ) which I
defines the boundary r of the domain (see Fig. 3).

dm (m) dt + am(m)dw (17) 3
mv 312 F(m)

where rn (i ) [B(m) + [a2(m)]] r(m) m
m r (m) 2 dm (2-m) 5 /2

2 (m ( 1 ) [ 2( ) , 
2(m) 2 (2-in) 3

0mm rm,() 0HH 2 m

Suppose that at time t - 0, the state of the system corresponds to some point I
defined by mo within D. When the random disturbance is applied, we are

interested in the time T it takes for a trajectory at mo to reach the

boundary r of D for the first time, i.e. I
I,
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T - min {t: m(t)er I m(O) = m0  moD (18)I
Now defining the probability that a trajectory has not reached the

3 boundary r during time interval t as

P(r,mo 0 Pr T < T (mo0) (19)

the Kolmogorov's (bakward) equation is written as

2

LP 'm°o " P (m°) jPo 1 am o m a) -o = L[P(TM (20)

3r 0 M 0 m 2mm 0 3

I with the initial and boundary onditions

IeO'm = 'onD , P(T,m) = 0 mrT r

* The distribution fuantion of the first passage time Pr[T = T] = 1 - P(T,mo0

and the corresponding Pontriagin equation for the nth moment is given by

I L[Mn m ] - nM 1 (mo) and Mn(m') = 0 (21)

I Finally, the mean first passage time nan be written as the solution of

a a2M am

L[M (m] a, (m 0 1 n) ( + -0 (in "I -1 (22)10 2mm o am 2 am o

with M1 (mc) - 0.

3 In addition to the boundary condltlon M1(mj O, a boundedness

condition at mo  0 0, M (0) < -, Is usually imposed on the solution to uniquely

determine M1(m o. This condition by itself implies that the left boundary mo
- 0 Is not an absorbing boundary. This condition may be violated if the noise

2
term amm(m0 ) vanishes at mo . 0, and ?,annot then be used to obtain the

I solution. It Is, therefore, important to understand the behavior of the

diffusion process m(t) near the boundary mo - 0 according to various Feller

I classification (see, for example, Feller, 1954; Ito and McKean, 1964; Karlin

I
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and Taylor, 1981). To this end, consider an interval (0, m cj and

let AG(0,me) be an interior point such that m(t) is a regular diffusion 3
process in [A'mc]. Putting Tx  as the hitting time of x, we can

define M1(Mo) as the mean time to reach either A or m,, i.e. m

1 (tool = EITA A Tm Im(o) = mo 1 for A <min <m 

and 'an be evaluated as

M(i) 2[1 - (io ,m)/c(',mj)] f r(n)(n,m) exp[P(n)]dn

0

2ct(M,m )/c(A,m) f P(n)a(A,n) exp[C~n)]dn (23)3

where

n n 2B(x) 2

S 2( dx , (zl 2) f exp[- (x)] dxf 2(22(
o a (x) z (x)

In order to c!assify the boundary behavior, consider the following

quantities Y 0 and 8 o, which -an be respectively defined as roughly the measure

of time to reach the left boundary 0 starting from an interior point

mo((O,m.) and the measure of time to reach an interior point mo starting from

the left boundary 0. They are defined as

_I I
= - . tfzr(n) exp[(n)]dn} exp[- *(x)]dx (24)

o 2,
o a -x) x

8 Jf zr) JfJ exp[- O(x)] dx exp[o~n~jdn (25)
0 o 0a 2(X)

where z is an interior point. The Feller classification of the left boundary,

0, in terms of Y and B is as follows:

(1) The left boundary 0 is regular, if Yo < w and Bo < U. The process can

both enter and leave from the boundary, 0. In other words, the process I
I
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starting from an interior point can reach the boundary with some positive

probability in finite time. Similarly the process starting from the

boundary can reach an interior point with some positive probability

infinite time.
(2) The left boundary 0 is an exit, if Yo < - and B = . The process

starting from an interior point can reach the boundary with some positive

3probability, but starting at 0, it is impossible to reach any interior

point mo0 O,mj . Furthermore, the exit boundary is either a trap or an

absorbing point.

(3) The left boundary 0 is an entrance, if Yo= and 8° <. An entrance

boundary cannot be reached from any interior point, i.e. the probability

is zero that the process starting at an interior point can reach an
entrance boundary. Furthermore, the process starting from an entrance

boundary moves at once to the interior never to return to it.

(4) The left boundary 0 is natural, if Yo = - and ° = W. The proess3 starting from an interior point cannot reach the boundary in finite time

and the process cannot reach any interior point starting from the natural

3 boundary.

i Using this classification, Kozin and Sunahara (1987) established some

stability properties of the singular point, 0. In the similar lines we
establish an instability condition for the singular point 0.

Theorem:

3 Let the singular point 0 be the left boundary of the interval (O,mc].

The singular point is unstable in probability, I.e. the event jsup
- t >lm(t:mo,O)I < c) has probability zero for all m. > 0, if the following

conditions are satisfied

1) 0 is an entrance boundary, i.e. Y 0 and B < -

ii) mc is a regular or an exit boundary, i.e. Ym < g

i where o

m

x r(n) exp[¢(n)]dnJ exp[- o(x)] dx . (26)
m aa(x) 

z
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I
Moreover, the mean time to reach m. is given by

m - m d
M (m) ! exp[- d(x)] exp[On()]dn (27)

0 m n 2(x) (

and MI(O) < =. 3
Proof: 3

The proof follows the boundary behavior a:cording to the above

classification. From the definition of 80 It is obvious that 80 < 
© implies

Lim f r(n) exp[¢(r)] dn < , A <Z< mA +0 A I
and hen:-e for an ent-ance boundary the following relationship

Y + so = Zim {(A,z) fz r(n) exp[Cn)] dri
0 0

yields 9im a(A,z) = =. Thus for some mo  0 <mo<Z<m , the Pr (Tz < T Im(O)
A + 0 0z 0

m.) is given by I

Lim [1 - a(m°z/a(A'z)] 1 3
A + 0

Moreover, since 80 < = we conclude that, the process starting at Fny moC[o,z]

reaches z in finite time with probability one. If the right boundary is

regular, the z is replaced by me . The right boundary is attractive and

attainable when mc is an exit point. Thus for both these cases

Pr Isup Im(t:m0,O)J< 1 - 0, for all m > 0 3
Now using the fact Lim a(A'm c - the exit time can be obtained from

equation (23) as (27j.

For the problem under consideration, numerical cal:ulations indicate 3
that Y , B < - and Y < - and thus the singular point 0 is unstable In

0 0 3

I
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probability. The mean exit time to reach m, can be calculated using equation

3 (27). These results are shown in Fig. 4.

3Conclusions
In this paper, a special case of co-dimension two stochastio bifurcation

associated with nonsemi-simple double zero eigenvalues is examined. The

normal form associated with this case is two dimensional and correspords to

the stochastically perturbed van der Pol - Duffing equation. The stochastic

averaging method appropriate for the Ito equations is applied to obtain a one

dimensional Ito equation for the Hamiltonian. The probability density, and

I its extrema are obtained. It is found that the extrema of the density

fun-tion correspond to the least probable value from which the process leaves

rather qui.kly. The critical extrema values m. of the stochastic system

approach the values of m at which the deterministic unstable limit cycle exist

as the noise terms tend to zero. Furthermore, the effect of additive and

multiplicative noise terms on the values of m, are demonstrated and it is

shown that the noise term lower these critical values. In order to examine

the stochastic stability of the equilibrium points from the Ito equation for

Hamiltonian, the domain of attraction of the deterministic system is

obtained. The stability in probability and the mean exit time are calculated
using the domain of attration. The stability in probability is obtained by

examining the boundary behavior of the one dimensional diffusion process. An
instability theorem is stated and proven. It is found that the nontrivial

fixed points are unstable in probability. The mean exit time to reach the
boundaries of the domain of attraction Is determined for various noise levels.
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Figure Captions

Fig. la The stationary density vs m for parametril'ally perturbed system.

Fig. lb The stationary density vs m for system with both parametrio and I
external exitations.

Fig. 2a The comparison of ?ritical points of the stochasti- system with that

of Ghe deterministiiz system.

Fig. 2b The critical points vs v2 for the stoehastl- ease.

Fig. 3 The right boundary of the domain of attraction vs v2 .

Fig. 4 The mean exit time vs mo .
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APPENDIX C

I. Introduction

Recently Hui and Tobak I analyzed the Hopf bifurcation that results when

Ithe steady flight of an aircraft becomes unstable in pitch by Increasing the

angle of attack. For the case of a double wedge aerofoil it was found that,

in addition to Hopf bifurcation, degenerate Hopf bifurcation can also take

place due to the violation of a certain transversality condition
2 . Since such

degenerate bifurcation is nongeneric, Sri Namachchivaya and Van Roessel
3 made

use of the results of singularity theory to unfold these bifurcations.

The purpose of this note is to extend these results on the nonlinear

analysis of a pitching aircraft at high angles of attack. It will be shown

that, in addition to the above mentioned co-dimension one and two

bifurcations, there exist co-dimension two bifurcations associated with a

double zero eigenvalue. Usually a zero eigenvalue implies a simple

bifurcation. In the case of a double zero eigenvalue with non-semisimple

IJordan form and no further degeneracy, two parameters are required for a

complete universal unfolding . All possible bifurcations that take place in

the neighborhood of this bifurcation point will be obtained by making use of

these unfolding parameters. A family of limit cycles may branch off from the

equilibrium surface in the vicinity of such a critical point. For the

equations of motion for a pitching wedge such a double zero eigenvalue does

occur at certain critical values of the system parameters. The partial

Iunfolding for this case is carried out below.
Consider an aircraft in steady flight at an angle of attack a. Suppose

some disturbances take place at time t - 0, e.g. due to a change in the flap

3deflection angle; the aircraft will subsequently undergo an unsteady motion

relative to Its steady flight. Such an unsteady motion of the aircraft

Imodifies the air flow and hence the aerodynamic forces on the aircraft which

I
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in turn determine its motion. Thus the aircraft's subsequent motion can only

be determined by simultaneously solving the unsteady flow equations of the air 1

and the e~uations of motion of the vehicle as a rigid body, aeroelastic

effects being assumed negligible.

Although simultaneously solving the coupled equations in principle

represents an exact approach to the problem of arbitrary maneuvers, it is

inevitably a very difficult and costly approach. In classical aerodynamics,

the traditional approximate approach is to assume the pitching motion to be a

small amplitude periodic oscillation consisting of simple harmonics. On this

basis the flow equations are decoupled from the inertia equation, and are 3
linearized to determine the aerodynamic response to such an harmonic motion.

The so-called aerodynamic coefficients thus obtained are then used to predict

the motion of the aircraft. Even though this approach ignores the time-

history effects on the flow field and the aircraft motion, it gives a good

approximation for calculating the aerodynamic response from the unsteady flow

equations and hence the pitching moment. This approximation which has been

adopted by Hui and Tobak I and Sri Namachchlvaya and Van Roessel 3 in their

investigations of this problem is used in this paper.

II. Statement of the Problem

Consider an aircraft in flight, free to undergo a single degree of

freedom pitching motion. The equations of pitching motion can be expressed as

S , -(

I
where a is the instantaneous angle of attack, I is the moment of inertia of

the vehicle about the pivot axis, and M(t) is the pitching moment at

instantaneous time t of the aerodynamic forces about the same axis. When the

I



I
motion is slowing varying5 , the pitching moment M(t) may be characterized with

sufficient accuracy by the instantaneous angle of attack a(t) and the

instantaneous rate of change of the angle of attack aft). Suppose a = a is an

equilibrium state of the system of Eqs. (1); then, putting a(t) = a + (t,

I the variational equations about the equilibrium position can be written as

I d4 M(t) (2)
t t )

where * is the angular displacement of motion measured from the angle of

3 attack a of the steady flight. It Is assumed that the moment required to trim

the aircraft at a has been accounted for, so that M(t) is a measure of the

perturbation moment only and is determined from the instantaneous surface

3 pressure. As noted earlier following the mathematical modeling approach of

Tobak and Schiff5, instantaneous pitching moment can be given as

U M(t) SL [C (O,O,o,h) -C (,;,a,h)]

3 where p, and V are the free stream density and velocity, respectively; S and

L are the reference area and length; and h represents the distance between the

apex and the pivot position as defined in Fig. 1. The function C m

represents the pitching moment coefficient of the aerodynamic forces about the

I pivot axis and CM (0,0,o,h) is Its steady value at a fixed angle of attack a.

Even though Cm depends on the flight Mach number M , the specific heats of

the air and the aircraft shape, these parameters will be considered as

3 "passive" parameters in this analysis. For a finite amplitude, slow, pitching

motion with angular displacement *(t) around a mean angle of attack a, with

I terms of 0(;2,,) assumed negligible, we can write
1
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I
- m(*'*,,,h) - f(a + *,h) + g(a + &,h);,

which reduces the second of Eqs. (2) to

d;

where U
M(t) I
I .-(f(a + p,h) - f(a,h) + g(o +

2 2-
P. V. SL

Equations (2) represent a pair of autonomous differential equations in R2

the trivial solution of which is 0 - 0. The objective of this investigation

is to understand the stability and the bifurotion behavior of the stationary I
solutions of Eqs. (2) as the system parameters a and h are varied.

III. Bifurcation of Fixed Points

The functions f(a,h) and g(a,h) are related to the stiffness

derivative S(a,h) and the damping derivative D(a,h) of classical aerodynamics

as follows: I

K (ah) - - S(a,h) , Kg(a,h) - - D(a,h)

Introducing new state variables x = i, y = i, Eqs. (2) may be written in the

form

X y, I
21x -2 - - -3 - -2-

S + 1 O + + Y 1x q1x y, (3)

where I1 " - S(a,h), 12 - - D(a,h) , PO - - (a,h)
2 aI

I
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I
31 u 2 2 - a 2qo a ah l 3! a 2 (a,h) q 2 - a " ~C~)

aa ' 3 aa2

It is evident that the nongeneric case U = 2 = 0 i.e., D(a h) = 0 and

S(a ch ) = 0, gives rise to a double zero eigenvalue with non semisimple

I Jordan form as the Jacobian. It is well known that the damping and the

stiffness derivatives are respectively quadratic and linear in h, i.e.,

D(a,h) - D(a) - D1 () h + D2(a)h2

S(o,h) - S (a) + S (a)hI 01

Furthermore, the qualitative variations of the quantities D(a,h) and S(a,h)

with a and h can be found in Hu1 6 for double-wedge aerofoil. The variations

of the components of S and D, namely SO , S1, D0 , D1 , and D2 are given

graphically in Sri Namachchivaya and Van Roessel 3 . The critical values

of a and h are obtained by letting D = S = 0 in the above expressions. The

critical parameter values and the various coefficients needed for the analysis

are given in Table 1 for To = T1 50. Introducing new variables x, y and new

time t,

-2 -3

2 - q 0

3 yields

.y,(4)

I- 1x u2y + X2 + xy + plx 3 + q1x
2y,

PO qPOPwhere (= 0,P !-)120P -2- and q 1  -3

I
The theory of normal forms deals with finding near identity coordinateI
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transformations, which simplify the analytic expressions of the nonlinear

terms. The resulting simplified nonlinear equations are said to be in normal

form. Eqs. (4) are in normal form since the expression for the normal form,

for a nonlinear system with quadratic and cubic nonlinearities and a double-

zero non-semisimple Jordan block, is identical to that of Eqs. (4). 

Furthermore, when the quadratic nonlinearities are not identically zero, the

higher-order terms (i.e., cubic terms) do not contribute to ',-litative

changes in the phase portrait. Thus, a simplified set of equations

=y , (5)

I =l
x + P2y + x + xy

which reveals all the principal phenomena contained in the general problem

will be analyzed. In Eqs. (5), p and P2 are the unfo'ding parameters and are

related to the determinant and the trace respectively of the linear operator

of Eq. (3). We first seek the fixed points of Eqs. (5) which are given by

(xo,Y o ) = (0,0) and (xoy o ) - (- uIO). Putting x = xo + u and y = yo + v,

the variational equations about the fixed point can be written as

v, (6) I
2

v 1 u + a2v + u + uv,

where a1 = I 2x0 and a2  U2 + X " The eigenvalues of the fixed point are

given by

2
a2  0 2

1,2 2 4 a (7)

It is evident from Eq. (7) that the fixed point is asymptotically stable

if r < 0 and a2 < 0, and goes through a Hopf bifurcation at a - 0

and a1 < 0. Thus, making use of the transformation

0 1
C1

I
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Eq. (6) in the neighborhood of a2 - 0 can be written as
-I 2

a2 -- I n + n + n

(8)

Now the formulas for Hopf bifurcation given by Guckenheimer and Holmes7 are

used to obtain the equation governing the bifurcating path as

3 1
2Ra3 + a2a = 0 , R = - 12 8a

where "a" represents the amplitude of the bifurcating periodic solution.

S'rOce a 1 < 0 it is obvious that the fixed points undergo an unstable

subcritical Hopf bifurcation when a2 = 0. Moreover the fixed point goes

through a simple transcritical bifurcation at a1 . 0 and a2 * 0. It may be

noted that the fixed point, a stable node for a2 
< 0 and an unstable node

or a2 > 0, becomes a saddle-node at a 1 = 0 while undergoing a transcritical

bifurcation.

IV. Global Bifurcations

It is clear from the analysis performed thus far and Fig. 2, that the

phase portraits in region (3) and (4) are not homeomorphic since the former

has a limit cycle and the latter does not. For similar reasons, regions (8)

and (7) are also not homeomorphic. Hence, there must be additional global

bifurcations occurring in which the nature of the fixed points do not change,

but the phase portraits as a whole undergoes a topological change. In this

section such global bifurcations are examined. The fixed point is a saddle

point when a1 > 0, and making use of the transformation

2 t32 €2 2
u a Cz , va z2  , a CV 1 = a 2 a C v 2 and T - Et.

yields
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I
dz 1

- z 2(10)

dz 2 2d " 1iz 1 z2 + ( 2  1 l 2 )

where JeJ<<I and c S 0. For E * 0 the above equations become an integrable I
Hamiltonian system with Hamiltonian

z2 z2 z3

H(z ,z 2) V l 2

2 2 ~ -f*- I
and (zI * z 2 - O) is a stable point and possesses a "saddle connection".

Since the Hamiltonian is conserved the level curves H = constant are solutions

of Eqs. (10) with e = 0. Furthermore, the value of the Hamiltonian at the I
saddle point is H(0,0) = 0, and the points of intersections of the saddle loop

with the axis z2 - 0 are z1  0 and z I  - vI . The unperturbed trajectories
2 1

of the saddle-loop at z - V can be obtained aa

12 1

z1 (tto) - 2 sech2 [ 2-1 (t-t 0)],

(11) I
3v1 3/2 IvZr2(t'to) " sech 2  0- Att) tanh 1- 2 (t-to0) ] .

I
Following the Melnikov procedure given in Guckenheimer and Holmes7 for the

perturbed autonomous system (10) (with e . 0), we obtain the condition that I

~I
f vr(t'to0) [v2 + u(t'to)] dt 0 (12)

for the saddle connection to not break under perturbation. Eq. (12) may be

written as I

I
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2T 7/2(
11 - 12) " 0

2v 2  8v 2
where f sech & tanh2d 45v

1.- 1 

2 165
12 fsech6 F tanh2 d ,10

-mI

Thus the saddle ccn.ecticn 19 preserved when

6 6
v2 =- 7v 1  or a2  7 a1"

It can be concluded that there exist two saddle connections: one
6 1

at - 6 I passing through the trivial solution, and one at p . i V that
2 7 712 71

passes through the nontrivial solution as shown in Figure 1.

The above calculations indicate the existence of a limit cycle in the

regions 3 and 8 in Fig. 2. The uniqueness of this limit cycle will be

demonstrated following the procedure outlined in Chow and Hale 8 and Carr et.

al9 . Every limit cycle within the saddle-loop must encircle the equilibrium

point (-v 1 ,0) crossing the x axis between -v1 and 0 at (b,0). Let the other

crossing point be (c,O). The limit cycles for the perturbed system is denoted

as r (b,v I ,v 2 ). Along the solution of Eq. (10) we have

C--p ,--) - E C + Z- )

and since rC(b,v 1 ,v2 ) is a limit cycle we have

f Hdt - 0, i.e., F(b,c,v,v 2 - I + (v2 Z z1 )dt -0
r 2 r E

The function F(b,O,v,,v2 ) may be written explicitly as

F(b,O,Vlv 2) v2J0(b,vl) + Jl(b,v1) (13)
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I
where

(bv f z2 dt ' l(b'v) f z z dt
0 1 r 21 1 r 12

0 0

Thus, the solution of F(b,O,v I  2 - o is given by I
"2 " - J1 (bv 1 ) / J 0 (bvl)

Differentiating (13) yields

F (b,O,v 1,v 2 ) 3o(b,v 1 ) * 0
a2

which implies, by the implicit function theorem (IFT) that there exists a

unique . continuously differentiable function v*(b~c,vl) such I
that F(b,C,v 1,V*(b',,)) - 0 for sufficiently small c and

v*(b,o,v 1) . - a 1 b,v 1 ) / j-0 (b,v1 )

Having shown the existence of a limit cycle by IFT, we proceed to show that

the limit cycle Is unique for a given value of v1 and v2 by demonstrating I
that v* is monotonic in b. However, it will be more convenient to employ in 3
place of b another parameter h, which corresponds to the energy level I.e.

b23 I
h - H(b~o) v V1 2 b

This change of parameter is justified, since dh/db - b(v+ 1  > 0 for

-v b < O. Thus

"2 - - ( o() - - P(n) (114)

where Jo(h) - u0(b(h),v 1), J1 (h) - 51(b(h),vl) and the dependence of v1  is

suppressed. Since z2 (b(h)) - z2 (c(h)) - O, it can be verified that 3
I
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c(h) dz1  c(h) z1
J,(h) )f - dz

b(h) 2 b(h) Z2

Furthermore, the li,,iits

J'(h)

Lim P(h) = - (6/7)v and Lim P(h) = Lm J1((h) V
1 3 3 J'(h) I

h 0 h -- v 3 /6 h -v 3 /6 0

agree with the previous calculations of saddle-loop and Hopf bifurcations.

The following relationships between Jo(h), Jl(h) and their derivatives can be

obtained using the expression for z2 ;

J (h) = V J2 '(h) b c(h) z dz10 b(h) z2

5J (h) - 6h J'(h) + V12J'(h) - 0
0 0 1

35J1 (h) + 6[hvJo'(h) - (v13 + 5hJJ'(h)] 0 (15)

(v,3 + 6h) J{'(h) - Jo(h)v1 + J{(h)

6h(v 13 + 6h) J'' " V2 J (h ) - 6h J'(h)

Now using the above relations one can show that Itf P'(h1 ) - 0 for some

h1 E(- v1
3/6.0) then

P,,(h )J) 6h 2 6,

6hi(v 1
3 " 6hi] J 0(hl " - (v1(P(h1 )) - V -j (v 1

3 + 6h I ) < 0

7vl 2 P2(h ) + 6(v 1
3

- 2hl)P(hl) - 6h v1 - 0 (16)
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Since 6h1 (v 1 3 + 6h 1 ) < 0 and Jo(h 1 ) < 0, It follows f rom the

inequality (16a) that P''(h 1 ) > 0. Furthermore, it followj from Eq. (16b)

that - v1 < P(h1 ) < 0. In other words, If there is a point h, for which

p'(h I) = 0, then the function P is concave up at this point with the value of

the function at this point lying between - v and 0. Since the end points of

p(hI) are at - v and -6/7 vI , p'(h) * 0 for h1 C(- v1
3 /6,0), in fact p'(h) >

0. Thus, p(hI) is a monotonically increasing function implying a unique limit

cycle.

V. Discussion of Results and Conclusion

The results of this analysis are illustrated in Fig. 2, where the space

of unfolding parameters is divided into ten regions indicating the various

bifurcations and phase portraits of Eq. (5). In passing from region one to

region two along OSI, the nontrivial fixed point changes from an unstable node

to an unstable focus while the trivial solution remains a saddle node. Along

OH1 , the nontrivial fixed point undergoes a Hopf bifurcation giving birth to

an unstable limit cycle. It has been shown that this limit cycle is unique

and disappears along OLI due to a global bifurcation and a saddle loop that 1

passes through the trivial fixed point is produced. The nontrivial fixed

point, in passing from region four to region five along OSI, changes from a

stable focus to a stable node while the trivial fixed point remains a saddle

node. Along OT a transcritical bifurcation takes places where an exchange of

stability between the trivial and nontrivial fixed points occurs. Finally, in

going from region six through, to region ten the nontrivial fixed point remains

a saddle node while the scenario of bifurcations for the trivial solution is

similar to that of Lhe nontrivial fixed point detailed above and presented in

Figure 2.

In this note a complete unfolding of a co-dimension two bifurcation due

I
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to a double zero elgenvalue of the equations of pitching motion of an aircraft

was carried out in the vicinity of zero stiffness derivative S(Oc,h)} = 0, and

zero damping derivative D(Gc hc) - 0. Unfolding of such a singularity will

uncover all poosi.le bifurcations that may be present in the vicinity of the

singularity, in addition to the results of Hui and Tobak I. Even though the

problem considered is not rich enough to fully demonstrate the method of

unfolding of a co-dimension two bifurcation point, as most of the local

results could have been obtained using methods adopted in Ref. 1, this method,

nevertheless, provides the results pertaining to uniqueness of limit cycles

and global bifurcations.
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M c he  -(3S/3o) -(aD3o) -(a 2 S/3 2a) -(a2 D/32 o I

2.0000 12.3886 0.4432 0.3158 1.5078 10.5616 25.1282

2.5000 19.2534 0.4471 0.1738 1.6417 9.5587 29.1733

3.0000 23.7198 0.4524 0.1240 1.7658 9.9810 33.3559

3.5000 26.7177 0.14571 0.1166 1.8872 10.8663 37.2688

4.0000 28.7890 0.4608 0.1233 1.9906 11.7336 40.5696

5.0000 31.3435 0.4656 0.1408 2.1382 12.9768 45.3055

6.0000 32.7784 0.4684 0.1506 2.2277 13.6656 48.2253 I
7.0000 33.6578 0.4701 0.1543 2.2831 14.0607 50.0638 1
8.0000 34.2344 0.4713 0.1557 2.3190 14.3154 51.2766

9.0000 34.6325 0.14721 0.1565 2.3433 14.4953 52.1131

10.000 34.9187 0.4727 0.1571 2.3604 14.6224 52.7144

II
Table 1. Critical Parameter Values Associated with Double Zero Eigenvalue.

I
I
I
I
I
I
U
I
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Unfolding of Degenerate Hopf Bifurcation
for Supersonic Flow past a Pitching Wedge

N. Sri Namachchivaya"
University of Illinois, Urbana, Illinois

and
H.J. Van Roesselt

University of Western Ontario, London. Ontario, Canada

This paper investigates the stabilil and bifurcation behavior of a double-wedge aerofoil performing a pitch-
ing motion at high angles of attack. When a pair of complex conjugate eigen.alue crosses the imaginary axis of
the eigenvalue plane. the trivial solution loses stabilil giving rise to a periodic %olulion, known as Hopf bifurca-
lion, provided certain transversalit) conditions are not violated. The existence of degenerate Hopi bifurcation
due to tIe violation of Hopf's Iransversalil) condition at certain critical values of the s)stem parameters is
shown. The behavior of the pitching motion near these critical values is examined b) unfolding the degeneracie,.
For the supersonic double-wedge aerofoil. various parameters defining the bifurcation paths were numerically
evaluated.

I. Introduction where or is the angle of attack of the steady flight. I is the mo-
N recent y sseveral new mathematical ideas have in- ment of inertia of the vehicle about the pivot axis, and M(i) isyearsthe pitching moment ai instantaneous time t of the

uenced the study of stability and bifurcation phenomena aeyic foe t t sa me We the

of nonlinear dynamical systems. In this paper, aerodynamic aerodynamic forces about the same axis. When the motion is

stability of a double-wedge subject to a single degree of slowly varying. the pitching moment M() may be char-

freedom pitching motion is investigated. Recently Hui & acterized with sufficient accuracy by the instantaneous angle

Tobak' analyzed the Hopf bifurcation that results when a of attack c(t) and the instantaneous rate of change of the

steady flight becomes unstable by increasing the angle of at- angle of attack & (1). Supose o =a is an equilibrium state of

tack a beyond a critical value a,. holding all other flow the system of Eqs. (I); then, putting r(t) =o+ (t). the varia-

parameters fixed. If more than one parameter is allowed to tional equations about the equilibrium position can be written

vary, such as angle of attack a and pivot position h, then as
phenomena other than simple Hopf bifurcation may occur. =
For the case of a double-wedge, it is found that if both angle dt
of attack a and pivot position h reach certain critical values o, dO, M I

and h,. respectively, then the transversality condition of the =--(t) -P.V.SL [C, (0.0 1.h)-C,,,(v .a.h) I
Hopf bifurcation theorem does not hold and a so-called di I 21 (2)
degenerate Hopf bifurcation takes place.2 However, this
degenerate phenomenon is nongeneric. In order to more com-
pletely understand the behavior of the system, it is useful to
examine it near the singularities a=a, and h = h, by either in-
corporating an unfolding parameter or by studying the prob-
lem as a multiple parameter system.

In this paper, the former approach will be used to under- -

stand the bifurcation behavior of the system. A general
framework for unfolding such degeneracies has been given by
Golubitsky and L.angford3 using the singularity theory.

If. Statement of the Problem Fig. Is Aerofoil at angle of attack.

Consider an aircraft in flight free to undergo a single degree
of freedom pitching motion. The equations of pitching motion
can be expressed as

d-- C M(t (I)
di dt

Received Oct. 25, 1935; revision received March 14, 1986.
Copyright 0) American Institute of Aeronautics and Astronautics,
Inc.. 1916. All rights reserved. / c...aMa

"Assistant Professor. Department of Aeronautical and ,aa0 o . ,,ss-u
Astronautical Engineering.

?Assistant Professor. Department of Applied Mathematics. Fig. Ib Transvenallty condition and Its violation.
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where J. is the angular displacement of motioa measured from Introducing new state variables y, = ,, y 2 = ', Eqs. (2) may be
the angle of attack a of the steady flight; p. and V. are the written in the form
freestream density and velocity, respectively; 9 and L are the
reference area and length; and h represents the distance be- 0
tween the apex and the pivot position as defined in Fig. IR. y=Ay+ Fy.. ) +( y) (3)
The function C,,(,&,,.ah) represents the pitching moment
coefficient of the aerodynamic forces about the pivot axis and where
C.(0,Oa.h) is its steady value at a fixed angle of attack o.
Even though C., depends on the flight Mach number A . the Y Y 1
specific heats of the air and the aircraft shape, these ' . JI
parameters will be considered as "passive" parameters in this
analysis. For a finite amplitude, slow, periodic, pitching mo- Alo/h) =
tion with angular displacement M(t) around a mean angle of -S(o~h) D(C~h)

attack o. with terms of 0(v,.v) assumed negligible, we can . 6,
write, F(y, ,y,.O.h) = B YT B1 'yy + Cv + CJ.Y1 Y,

-C,,,(¢,ho.h) =f(o+ ,.h)+g(o+I.h)= as IS a- (D
811 =--(ch), B91,.- -(ah)

which reduces the second of Eqs. (2) to 2 I
I a2S I D

d. =F(-.,o~h) Cu1 
=  3 (oh), e" ll: (oh)di

The stability of the trivial solution is governed by the eigen-
where values of the matrix A. which are

M() D D-- = o h L[ (a + ,.,h) -fPoh) X = 2 - * i.-S - D:-/4 = , (4)
/ 2 2 I

I P. VIt is evident that the equilibrium position is asmptotically
-g(o +2 .h)sJ. . VSLstable when I

Equations (2) represent a pair of autonomous differential S(o.h) >0. D(o.h) >0
equations in R2 the trivial solution of which is . =0. The ob-
jective of this investigation is to understand the stability of this and instability occurs when D(o.h) = 0 and S(o,h) > 0, giving
trivial solution and the bifurcation behavior of Eqs. (2) as the rise to a pair of pure imaginary eigenvalues; or when I
system parameter,, a and h are ,aried. D(o.h)>0 and S(o.h) =0, giving rise to a zero and a negative

eigenvalue; and the nongeneric case D(o.h) =0 and

Ill. Slabilit) of the Trivial Solution S(o.h) =0, giving rise to a double zero eigenvalue. Only the

The functions f(oh) and g(o.h) are related to the stiffness irst case will be considered. Though the extension of the

derivatve S(o,h) and the damping dcrivatie D(.h) of general results obtained in this paper for a two parameter

clasical aerod)namics as follows: system is possible, we shall anal)ze the problem as if it were a
one parameter system. To avoid duplication of calculations,
we shall refer to the bifurcation parameter as p which can

-- (oh) z-S(a.h). cg(o,h) =-D(o.h) represent the angle of attack a (or the pi%ot position h) I
ao holding h (or a) constant. Let us assume that at g = g,, the

damping derivative becomes zero D(,, = 0, the stiffness
derivative S(p, )>0. and the corresponding eigenvalues are
X, = and w, = ±i<S(o, ). According to Hopf's theorem,' I
the system described by Eq. (3). along with the conditionsS '

"" \W(p, ) =w,>0, D(p , )0 (Oa)

dD
D' t- o = ) 0 (Sb)

has a family of periodic solutions bifurcating out of the
lol' . 0 ibi 0 4 a equilibrium solution y=0. parameterized by the amplitude a

0*.$ for lal small. Furthermore, Hopf showed that along the
periodic solution branch p is an even function of a given by

" ," +Aa.a: +0 4" + . (6a)

- , assuming

0 (6b)

These solutions exist either for ,a>p, (supercritical Hopf
isiO U, .s bifurcation) or for jp<p, (subcritical Hopf bifurcation)

depending on the sign of #:. Bifurcation of such periodic solu.
Fig. 2 tffureadlou dialgrms: a) superltical. bl subrlitk-al. d 0 tions out of the trivial solution, when Hopfs conditions, viz.,
degemerate Hop( bifuralloo. Eqs. (Sb) or (6b) or both Eqs. (5b) and (6b), are violated is in I
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general called degenerate Hopf bifurcation. The preceding where

analysis holds for any single degree of freedom motion. Ap-
plication of the analysis requires a knowledge of the stiffness 0= cI + const 0 w + a2 

P + , R

derivative S and the damping derivative D together with their D

partial deriva:ives. The stiffness and damping dervatives for a 1 1 3

double-wedge aerofoil in supersonic flow have been deter- P - - 1.B z--- ,C
mined by Hui.6 In this paper their partial derivatives have +3
been calculated numerically using the results of Ref. 6. For the
problem of double-wedge aerofoil it is the violation of Eq. The amplitude parameter relationship can be vwritten using Eq.

(5b) which occurs, hence it is the degenerate Hopf bifurcation (9) as

associated with the violation of Eq. (Sb) which will be studied. 2R
Hopf's transversality condition, as well as its violation when h

is taken as the bifurcation parameter, is shown in Fig. lb.

provided that D' (ju,) 0.
When D' (g) <0, which is generally the case when eigen-

IV. Bifurcation Analysis values cross from left to right in the complex X-plane. it is evi-

In this section both Hopf and degenerate Hopf bifurcation dent from Eq. (II) that the bifurcating path exists for ,j>0
will be considered. Assume that at ,A=M,. the damping only if R<O (supercritical bifurcation) as shown in Fig. 2a.
derivative becomes zero [D(#A, ) =01 and the stiffness Similarly the bifurcation path exists for 7<0 only if R>0
derivative is positive [S(I, ) >0]. The eigenvalue is (subcrilical bifurcation) as shown in Fig. 2b. The opposite is
X=, = *i ,.S(;i,.) and the corresponding eigenvector is true for D' (ju, ) >0. It is well know- ,hat the damping and the
el,X, ). stiffness derivatives are respectie adratic and linear in h,

To study the Hopf bifurcation and its stability, a change of i.e.,
coordinates is made to put the system of Eqs. (2) into a stan-

dard form. This is achieved by the linear transformation D(o,h) = D o (a)+D ()h + D2 (O)h

y=Tx (7) S(ah) =S 0 (a) +S, (a)h (12)

where Furthermore, the qualitative variations of the quantities
=[10 OD(ah) and S(oh) with o and h can be found in Hui, for
T= double-wedge acrofoil. By considering a as the bifurcation

parameter, i.e., A=o, the results of Hui and Tobak' are

is the matrix consisting of the real and imaginary parts of the recovered. Similarly, the amplitude parameter relationship,

critical eigenvalue and x= (x,.,x) represents the new state considering h as the bifurcation parameter, can be written as

variables. The above transformation yields the system of

equations with the linear part in standard form as h-h, = 8(t+dD:(h) "\--(Jh =) ,

1. F -W, 0  x], 
l3)

Degenerate Hopf Bifurcation
+ 8xx+C x' +CC,,,xx, Now we shall examine the bifurcations that can take place

+[,,-'x1 + B,,x, X" +-x , " "J when Hopf's transversalit) condition [Eq. (Sb)] is violated,
i.e., degenerate Hopf bifurcation. It can be shown that in

(8) double-wedge and flat-plate aerofoils, degeneracies of the

above-mentioned type for both parameters (aD/'8o=O,
Before proceeding to degenerate Hopf bifurcation, a summary 3D/8h = 0) are present. However, S(a,h) >0 only for the sec-
of the results for the regular Hopf bifurcation will be given. ond case, and thus the degenerate Hopf bifurcation when

D=0, 0D/3h =0. will be examined, i.e.. %%hen
Hopf Bifuarcation

Now the formulas for Hopf bifurcation given by Guck- D (a,)
enheimer and Holmes' and Ariaratnam and Sri Namachchi- D2 (o,) =4D0 o, )Dt, (a, h, = "2D, [a,)

vaya.: are used to obtain the equation governing the bifur-
cating path

provided D2 (a,) *0. Violation of the transversality condition

2Ra' - D' (u, ),a = 0 (9) when h is considered as the bifurcation parameter is shown in
Fig. lb. Furthermore, for the eigenvalues to be purely im-

where aginary we should have

I S, (o,)DI (o)
R= (B,,B,+,KC u,). q=u-jA,4, So(ao)- 2D2(a) >0

and a represents the amplitude of the bifurcating periodic Since we are studying the local behavior of the system, Eq.

solution given by (8), as opposed to the global one, subsequent analysis is per-
formed in small neighborhood of x, while the above condi-

. I B l tions prevail. Thus, making use of the general results given in
x, =-a sin + B,sin21 +- os2o Ref. S for degenerate Hopf bifurcation, the equations govern-

w, 2 w, 3 6w, ins the bifurcating path and improved frequency for the

SFi B,, 2 2 wedge problems are obtained as:

X, =3 cos-- - - sin2(+--B,2cos2 (10)3 w, ,. Mal2Ro - DA (o,)h~a = 0 (1 4a)
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and (17) yields the previously obtained result orEq. (I5). In Fig. 3a

-jr[ S2 ') 1 S0(+) R the case D(o,.)/R<O is considered, for which Eq. (17)

4' , +" D (14b) represents an ellipse for 6>0 and has no real solution for
10[ &4wDz (a,) W, w 2D2 (O,) 0<0. On the other hand, for D: (O)/R>0 Eq. (17) represents

an hyperbola for 09eO as sketched in Fig. 3b where s and u in-
respectively, where /= h - h,. The existence of the bifurcating dicate stable and unstable solutions, respectively.
path depends on the sign of R/D,(o,). In other words, a Applying the results obtained in the above analysis to Hui's
bifurcating solution exists only if RID. (o) >0. Therefore, in solution' for a double-wedge aerofoil. it is found that the case
degenerate Hopf bifurcation, the bifurcating path exists on corresponding to Fig. 3b occurs. The special cases of a flat
both sides of the a axis as opposed to Hopf bifurcation where plate aerofoil and a wedge may be obtained from Hui's solu- I
the bifurcating path exists either for h>O or for i<O. The tion6 by an appropriate choice of shape parameters 7). 7, in

bifurcating path can be expressed explicitly as Fig. Ia. For the purposes of this study, we focus our attention
on the case r, = T, = 5 since this approximates a thin aerofoil.

h-h, =* ____ _ I (8D/ ' (IS) For a double-wedge in supersonic flight the various com-
2-.D,(o) I8/o \(s ponents of the stiffness and damping derivatives, namely S0,

S,, Do, D, and D, are plotted in Figs. 4 and 5. Using Eq.

It may be noted that each bifurcating path defined by Eq. (15) (12), S(ah) and D(o,h) for a given value of a and h may be

has a distinct frequency given by Eq. (14b). If D:>0, then obtained.

both bifurcating paths given in Eq. (15) are unstable while the In addition to these results, various other quantities re-
trivial solution is stable. On the other hand, if D, <0 no bifur- quired for the bifurcation analysis and unfolding are also

cating solution exists. These results are shown in Fig. 2c. calculated and displayed in Figs. 6 to 8. In Fig. 6 the relation-
ships between h, and a, and between M. and o, are plotted.

V. Unfolding From this figure one may obtain the critical value of h and a I
Now to consider the behavior of the system near this

nongeneric degenerate Hopf bifurcation, an unfolding
parameter is introduced. Since the degeneracy occurs while
considering h as a bifurcation parameter, it is natural to con- .. ,

sider a as an unfolding parameter. Loosely speaking, a ". I
parameter is said to be an unfolding parameter when it fills in
the missing lower order term in the bifurcation equation. The 1. "
main theoretical results classifying various bifurcations and
their unfoldings when the conditions of Eq. (Sb) or (6b) or
both fail were presented by Golubitsky and Langford3 using ,.0
singularity theory. Making use of available results, 3 the equa-
tion governing the bifurcating paths incorporating 3D/8o can s. 0m. U
be written as

2Ra' - a2D +aDj 8)=0 (16)

0.46

which simplifies to
0.20

where/R h--=0 (17) 4

w here 0.0 S.20 1040 fi, 0 2 00 25' O n0. 0 0

+D (o, )h, +D.(o, )hZJO Fig. 4a S, vsi for'S,. = ...

.030

a =0 h0hr
i = h -h , +4 

.I

Depending on the sign of D, (o, )/R and 0, a set of bifurcation .ie
diagrams as shown in Fig. 3 can be obtained. For 0= 0, Eq.

. 2.70 3
Fig. 3a Case Da(o*)/R<l.

0.0 0.0 00 -4i4

Fig. 3b Cm D(*,)/R>g. ,, U

Fig. 3 Unoldlmnp. Fig. 4b S vsefor A,,,-2J.... 10. I
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tion has been studied. It was found that, in addition to the Guidance, Control. and Dynamics, Vol. 7. Jan.-Feb. 19 4, pp.

simple Hopf bifurcation, degenerate Hopf bifurcation can 113-122.
take place if more than one parameter is allowed to vary. Fur- 3Ariaratnam, S.T. and Sri Namachchivaya. N.. "Degenerate Hopf
thermore, it was shown that in the degenerate case, there will Bifurcation," Proceedings. IEEE International Symposium on Cir-
be two periodic bifurcating paths (on both sides of the a axis), cuits and Systems, Montreal, Canada. Vol. 3, 1984, pp. 1343-1348.
with two different frequencies. These frequencies are either JGolubitsky. M. and Langford, W.F., "Classification and Un-
both stable or both unstable, as opposed to Hopf bifurcation foldings of Degenerate Hopf Bifurcations," Journal of Dkfferential
where the bifurcating path exists either for 1/>0 or for ,l<0. Equations. Vol. 41, 1981. pp. 375-415.
However, the situation giving rise to degenerate Hopf bifurca- 4Tobak, M. and Schiff. L.B.. "The Role of Time-History Effects
tion is nongeneric. By the introduction of an unfolding in the Formulation of the Aerodynamics of Aircraft Dynamics,"
parameter, the possible generic bifurcations that can take Dynamic Stability Parameters. Paper No. 26, AGARD CP-235. May

place near-the singularity were obtained. This reveals that for 1978.

D, (o,)/R > 0, there exist either two subcritical bifurcations or sHopf. E.. "Abzweigung einer periodischen Losung von einer sta-
no bifurcation in a neighborhood of the degeneracy depending tionaren Losung eines Differential Systems," Berichten der

the s of 0. Similarly, it found that f Mathemanisch-Physischer Klasse der Sdchsischen Akademie derl
upon h sign was or Wissenschaffen zu Leipzig. Vol. 95. 1942, p. 3-22. English translation
D2 (o)/R <0 there exist either two supercritical bifurcations with commentary by L. Howard and N. Kopell. in Marsden, J.E. andor no real solutions in a neighborhood of the degeneracy McCracken. M., "The Hopf Bifurcation and Its Applications," Ap-

depending upon the sign of $. In addition, numerical results plied Mathematical Sciences. Vol. 19. Springer-Verlag. New York,
of the various components of the stiffness and damping 1976.
derivatives, and other quantities required for the bifurcation 6Hui, W.H., "Unified Unsteady Supersonic-Hypersonic Theory of
analysis, were presented for a thin aerofoil. Flow Past Double Wedge Airfoils," Journal of Applied Mathematics

and Physics (ZAMP), Vol. 34, 1983, pp. 458.488.
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APPENDIX D

Introduction

In the last fifty years fighter aircraft have evolved from designs

characterized by subsonic speeds, moderate to high aspect ratios and

negligible sweep to designs capable of supersonic speeds employing low

aspect ratio wings with significant sweep and taper. Many of these

changes were dictated by the need to reduce drag in transonic and

supersonic flight and this in turn led to new problems in finding a suitable

compromise between performance, handling qualities and stability/control

requirements. Recent developments have demonstrated that an aircraft

with reduced static stability (RSS) supplemented with an active flight

control system (ACFS) results in lower weight and increased

maneuverability [1]. The design of such aircraft requires that the control

systems and the aerodynamic configuration be considered together from

the start. Traditionally flight controls were used only to improve the flying

qualities of a chosen configuration. The feasibility of this control-

configured vehicle (CCV) design approach is amply proven by the X-29

research program [2].

The CCV approach has two immediate implications for combat

aircraft design. The first is the possibility of direct-force maneuvers (DFM).

Direct force maneuvers refer to the "ability of the aircraft to yaw and pitch

independently of the flight path or to maneuver at constant fuselage

orientation". This is especially significant in target tracking. The second

is post-stall capability (PST) in close air combat which allows the aircraft to

perform "controlled tactical maneuvers beyond the maximum lift angle of

attack up to at least 70 degrees" [3]. The design of fighter aircraft with
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I
these capabilities requires an understanding of translational and rotational

mode interaction as well as nonlinear aerodynamics at large angles of

attack and sideslip. Some of these problems of mode interaction and

nonlinear dynamics have been observed before the advent of the CCVm

approach. The phenomena of coupled yaw and pitch divergence at large

roll rates was investigated in [4-6]. Mode coupling can also occur at special

values of design parameters. For example, the stability of the lateral modes

of a rigid aircraft is influenced by the choice of the wing dihedral angle

(CIO) and the vertical tail size (Cnp). In Figure D.1 the stability boundaries i
are plotted in terms of CIO and CnP. At CIO = -0.002 and Cn =- 0.0025 the

stability boundaries intersect and the aircraft experiences a simultaneous

loss of both Dutch roll and spiral stability. This phenomenon is most likely 3
to occur at high lift coefficients (i.e. large angles of attack).

While the conventional linear model with its assumptions of small i
angles of attack and sideslip is adequate for the determination of stability

boundaries, at large angles of attack and sideslip the aerodynamic deriva- U
tives are no longer constant and hence a nonlinear analysis is required.

Rhoads and Schuler [7] were one of the first to perform a theoretical and

experimental study of airplane dynamics in large-disturbance maneuvers. 3
A key feature of their work is the dependence of the aerodynamic stability

derivatives on the Mach number and angle of attack. Unfortunately any I
possible effects of large sideslip angle were omitted. Since then, NASA has

conducted a series of wind tunnel investigation of the effects of large

sideslip angle on both static and dynamic stability derivatives (NASA TN

5361, 6091, 6425, 6909, 7972). A sample of these results is reproduced as

Figure D.2. The nonlinear behavior of the stability derivatives is evident. It

was also observed that the rate or "delay" derivatives due to the sideslip

I
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angle, traditionally omitted from the linear model, may be important for

supersonic fighters and their omission can lead to large errors especially in

system identification [8]. It is interesting to note that the influence of the

rate derivatives was also observed by Tobak and Schiff [9] and Orlik-

Ruchemann [10].

Having established that at large disturbances, stability derivatives

I depend on both the angle of attack and sideslip in a nonlinear manner, the

next challenge was to relate these nonlinearities to the dynamics observed

I at large angles of attack and sideslip. One of the earliest study was carried

Iout by Ross [11] on the HP-115 at the Royal Aircraft Establishment (RAE).

Based on a cubic dependence of the yawing moment on the sideslip angle, it

Iwas demonstrated that an unstable Dutch roll mode gave rise to a limit cy-

cle. This was perceived during flight as an oscillation of the aircraft wing

about the roll axis and is commonly referred to as "wing-rock". This work

Iwas followed by investigations of cubic nonlinearities in the rolling moment

as well as in the damping-in-roll derivatives [12]. The Gnat trainer was

Iused for this study. In this case both directional divergence as well as wing

rock was accounted for. It was also noted that the influence of external

Istores was significant, confirming the sensitive dependence of the nonlin-

iear dynamics on the aircraft configuration.

Another nonlinear motion was identified by Johnstone and Hogge

I[13]. In their study of the A-7, they identified certain combinations of angle

of attack and sideslip which led to a mutual cancellation of the rolling

I moments due to the angle of attack and sideslip. The longitudinal and lat-

eral mode coupling resulted in a phenomena called "nose-slice". Basically

I"nose-slice" refers to a predominantly yawing motion followed by a rapid

Iroll. The nose-slice departure occurred at angles of attack considerably
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I
lower than that for normal stall. This departure was not predicted by the

parameter (Cnp)dyn (NASA TN 6993) commonly used as a measure of spin

resistance. This parameter is actually an approximation for the coefficient

of the quadratic term in the fourth order characteristic equation for the lat- -
eral dynamics. Mathematically the criterion is neither necessary nor suf-

ficient for stability although in practice predictions based on this parameter

correlated well with flight test results with few exceptions. 3
Various methods are available for the analysis of nonlinear systems.

Instead of decoupling longitudinal and lateral modes, some researchersm

have tried to retain as much as possible of the full 6 degree of freedom

model. One such method is the pseudo-steady state (PSS) analysis of

Young, Schy and Johnson [14,15]. Observing that the effects of gravity are

typically small compared to the airspeed for supersonic fighters, a 5th order

model was derived. Equilibrium solutions of such a system were referred to i

as "pseudo-steady". This approach was carried to its extreme by Carroll

and Mehra [16], Hui and Tobak [17]. The thrust of their research is the use

of bifurcation theory to compute the equilibrium solutions of the full6 

degree of freedom system with nonlinearities based on the interpolation of

wind tunnel test results. In the context of bifurcation theory, the Dutch I
roll/wing rock instability observed by Ross corresponds to a supercritical

Hopf bifurcation. This phenomena is characterized by a pair of complex i
eigenvalues crossing the imaginary axes. The loss of spiral stability is 3
characterized by the crossing of a real eigenvalue. This is referred to as a

simple bifurcation. The nonlinear dynamics of aircraft with eigenvalues 3
close to the imaginary axes (i.e. marginally stable /unstable or critical

modes) was studied by Cochran and Ho [18] using Malkin's method. I
Basically Malkin's method is related to the theory of center manifold which i

I
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I
is a dimension reduction technique whereby the critical modes are decou-

pled from the stable modes and the analysis is then performed on a subsys-

tem of lower dimension.

The extension of these techniques for the analysis of nonlinear sys-

i tems perturbed by random excitation has not received much attention from

the flight dynamics community. Physically this corresponds to flight at

i large angles of attack and sideslip in a turbulent atmosphere. In the pres-

ence of random excitation, the dependence of the stable modes on the criti-

i cal modes was studied by Haken [19] and is referred to as the "slaving

Iprinciple". For a stability analysis it is more relevant to consider the de-

pendence of the critical modes on the stable modes. One such method is the

extended stochastic averaging theorem of Papanicoloau and Kohler [20]

which provides a Markov approximation for the dynamics of the critical

modes. Another approach developed by Coullet et al. [21] uses the idea of

"normal forms". Once again the emphasis is on dimension reduction and

simplification of the resulting subsystem. It was found that for systems

perturbed by random excitation, certain nonlinear terms which are remov-

able from the deterministic normal form must be retained due to a phe-

nomena called "stochastic resonance". The methods of stochastic averag-

ing and stochastic normal forms were reconciled by Namachchivaya and

Leng [22]. The key result is that the stable modes generated a second order

contribution to the critical modes. This was omitted by Coullet et al. [21].

The resulting subsystem was then found to have the same Markov

approximation as that given by the extended stochastic averaging theorem.

The problem of mode interaction is not limited to flight dynamics. In

aeroelasticity fairly similar phenomena can be observed. The nonlinear

oscillation of panel flutter was studied by Dowell [23]. In Figure D.3, the
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stability boundaries of a plate in a gas flow are plotted in terms of the

nondimensional pressure difference across the plate () and the in-plane

loading (R./I 2 ). At X = 200 and Rx/n 2 - -4, the plate undergoes a simultane-

ous loss of flutter-divergence stability. Basically flutter is a dynamic insta- I
bility characterized by a complex pair of eigenvalues crossing the imagi-

nary axis. Hence it may be regarded as an aeroelastic analog of the Dutch

roll/wing-rock instability. Similarly, divergence is a static instability and is

the counterpart of the spiral instability in flight dynamics. The phenomena

of coupled flutter-divergence instability was also observed by Landsberger I
and Dugundji [24] and Chen and Dugundji [25] in their experimental

investigation of the aeroelastic behavior of forward swept graphite/epoxy

wings. In Figure D.4, the instability can be seen to occur at special

combinations of airspeed and ply angles of the composite fibers. Henceforth

for clarity, this aeroelastic perspective will not be emphasized. 3

Application: Aircraft lateral dynamics at large angles of attack and 3
sideslip in a turbulent atmosDhere 3

The results derived in the previous sections are now applied to the

analysis of the lateral dynamics of a rigid aircraft at large angles of attack

and sideslip in a turbulent atmosphere. The example is based on the

uncontrolled lateral dynamics of the F-104. At a high lift coefficient (i.e.

large angle of attack) of CL = 0.735, the nonlinear system is defined by: I

I
I
I
[
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[ -0.1662 0 -0.9933 0.10441 0
d p -23.99 -1.390 1.292 0 (1 3)p3

U'rJ = 4.0772 -0.0406 -0.2175 0 r + 3)3
0 1 0 0

+ ~ -1.3901P(t+ .0.0406JPg(t)
0

At this lift coefficient the eigenvalues are 0.0532 + 2.207j, 0.000566, -1.88.

Hence both the Dutch roll mode and the spiral mode are marginally

unstable and the post-critical behavior requires a nonlinear analysis.

Following Ross [12], it is assumed that only the roll (p) and yaw (r)

equations exhibit significant cubic dependence on the sideslip angle P. For

simplicity, only the effects of atmospheric turbulence on the roll rate will be

considered. Physically this corresponds to a spanwise velocity variation

along the wing causing a rotary motion. The power spectral density (psd)

for Pg(t) is given by:

0.002046
1 + 0.0082o 2

where the intensity is taken to be 21 ft/s and the scale factor is 2500 ft for

conditions in a thunderstorm [26].

The system is first brought to canonical form using the eigenvectors

of the linear system. The transformation is defined by:
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13-[0.1975 0.1070 0.0146 0.1028 1 x

p1  1.889 0.7779 0.0015 5.3462{ ;0.28 -031 L0.2~ ~ 7 33 -0.:!J121  z-0.3317 0.8W4 2.6242 -2.8436 Xs 11

U
where x, y represent the Dutch roll (dynamic) mode, z represents the spiral

(static) mode and Xsl, the stable variable. Converting to polar coordinates (x I
= r cosO and y = r sine) and applying the extended stochastic averaging the-

orem, the stable mode Xsl, may be removed and the Dutch-roll (amplitude),

r and the spiral, z, critical modes are denoted by the Ito equations:

dr = (pr + erz2 + cr 3 + (S 1)2/2r)dt + S1 dWl I
dz = (Xz + dr 2z + bz3 ) dt + S2 dW2

where the cubic coefficients of the critical sub-system are now linear func- -
tions of 1P3 and nP33: I

c = -(3.384113 + 11.90 nM3)10 -4  e = -(5.746 1I3 + 20.20 nf33)10-6

b =( 5.324 3 + 31.33 np3)10 -7  d (1.88 113 + 11.07 nP3)10 -4

I'
In canonical form the external excitation is given by: I

rd1(t) r-0.1122d2(t) [. =0.0492 gt

d2(t)| -0.2767
ds(t)J -0.2273 J I

and hence using results derived the excitation intensities for the system

are:

I
I
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S1  = 0.0075 f Rpp(t) cos(2.207t) dt

= 0.0075 [ 2n. D(2.207)] (Wiener-Kinchine relation)

i - 9.277x10-5

00

I S 0.07657 -j Rpp(Qr) dc
-00

j = 0.07657. 2n. (D(0)

= 9.845x10-4I
i For a soft loss of stability it is necessary that b, c < 0, i.e.

I 103 < - 5.88 nP3 (b < 0)

1P3 > - 3.52 nP3 (c < 0)I
eThe bifurcation behavior of the deterministic system is preserved if 8 = 0

i.e.":

I d e
(S27 (S1)2

This leads to:

I 133 = -5.3 nP3

I These conditions are plotted in terms of nP3 and IP3 in Figure D.5. It can

i be observed that for the requirements for a potential flow (8 = 0) is well

I
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within the constraints for a soft transition. Furthermore for the values of

nP3 and 13 concerned, K = (d (S1) 2 + e (S 2 )2)/4 is negative. Hence the

existence of a normalizable potential flow steady-state pdf for 8 = 0 is

guaranteed by the conditions b < 0 and c < 0. Given the actual nonlinear U
aerodynamic coefficients nP3 and 103, these relations then provide an

indication cf the dynamics at large angles of attack and sideslip. Since the

Dutch roll mode corresponds to a roll-yaw motion, it is preferable in

practice to stabilize the Dutch roll mode at the expense of the spiral mode.

From the correction factor for the effective unfolding parameters, this is I
achieved if 8 > 0 , i.e the nonlinear aerodynamic coefficients should satisfy:

1P3 > -5.3 nP3

This example illustrates the dynamic implications of the nonlinear aerody- -
namics at large angles of attack and sideslip and it emphasizes the

inadequacies of a deterministic nonlinear analysis for systems undergoing U
a coupled static-dynamic instability.

I
I
I
I
I
I
I
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APPENDIX E

Introduction.

One of the most fundamental components of a mechanical system is a 1

rotating shaft. It is, therefore, not surprising that through the years

considerable effort has been directed at obtaining a better understanding of

such mechanisms. Toward this end, many problems have been solved. Equally

important, many other problems have been better defined (see Dimentberg [1],

Biezeno and Grammel [2]). Gyroscopic systems in general, and in particular

the problem of rotating shaft received much attention because of its somewhat

unexpected results reported by Ziegler [3], in which he showed that the I
damping tends to destabilize the whirling motion of a shaft-disc system, for

angular velocities above the critical angular velocity of the system. The

analysis of the system with harmonic parametric perturbations was made by

Mettler [4] and Bolotin [5], and various stability boundaries were obtained.

Tondl [6] studied the instabilities of a central disc on an asymmetric shaft

and obtained equations of an asymmetrical shaft rotating in asymmetrical

bearings was made by Gladwell and Stammers [7] using Floquet theory. However, I
these analyses did not consider the dynamic behavior of the system when

parametric excitations are stochastic. The stability of random parametric

vibration of shafts have been analyzed by Tam [8], and Schweiger [9] to

determine various regions of stochastic instability. In many practical

situations, where a shaft may be mounted to other mechanisms, the disturbance I
arise from both deterministic and random sources. Thus, in this paper we

shall examine the response and stochastic stability of rotating shafts when

they are excited by random parametric excitations in addition to harmonic 3
parametric excitations. A paper dealing with moment stability of coupled

conservative systems under combined harmonic and stochastic excitation was 1
presented by Ariaratnaw and Tam [10]. Conditions for stability in the first

I
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I
and second moments of response were derived for a thin, sImply-suppQrted,

I ' elastic beam subjected to a small intensity dynamic transverse load at mid-

span. This paper follows the approach of Sri Namachchivaya and Ariaratnam

[11], Sri Namachchivaya [12] and Ariaratnam and Tam [10] to find mean square

I stability conditions for the response of the rotating shaft.

Formulation of the Problem

A rotating system can be identified as a gyroscopic system only when

treated in a rotating reference frame, and this approach will be followed in

considering the transverse motion of a continuous uniform elastic shaft of

I asymmetrical cross-section mounted in a rigid bearing and rotating with

constant angular velocity Q about the horizontal centerline (oz) of the

bearings. The rotating shaft of length Z, mass per unit length m, and

flexural rigidities EIu, EIv respectively, parallel to directions ou, and ov

is loaded by a time dependent axial thrust, say, P(t) = Po (1 + f(t)), as

Ishown in Figure la.

The transverse motion of the rotating shaft is given by the following

set of two parallel differential equations: (e.g., Dimentberg [1])

Iau a au au

E U + Pt - + M a + D Du - 2mfv - mg u = 0
U az4 az2  at 2  at

av +~ )au av av2

aElv  + Pt - + m a + D - + 2m~u - m 2v = 0az 2  az 2  at2  at

For the case of simply supported ends, the following boundary conditions must

be satisfied:

u(Ot) - u(L',t) - 0 , v(O,t) - v(Lt) - 0

a2 U( 'a2 V 0 00 32 2
a 2) 0 2 au(t) a v(,t)az z2 z az2-•
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Considering the fundamental mode, these boundary conditions are satisfied with

the following expressions for u and v:

u(x,t) - U(t) sin w , v(z,t) - V(t)sin .z

We assume that the axial thrust is harmonically varying and is given by

P(t) = P 0 (i F(t))

where P0 is the mean value, and F(t) consists of a combination of a harmonic I
term and a stationary stochastic process as perturbations, and assumed to be

of the order E. Substituting the expressions for the modes into the governing I
partial differential equation and simplifying leads to the following two

ordinary differential equations for U and V:

U - 20V + -2 _Q2 U + [(U - F(t) U] = 0I

V + 2QU + (W2 - Q2) V + E[ V - F(t) V] = 0 (

where

-. Tr U -2 po) 2 (PV
1 2 - = 2 - PO)  F(t) = chcosvt + f(t)

1 2 E £W~2 Iy

I
UU 2EIu V V2EIv D 2

E L2 E 1 2 - , k h 2

and W 1, W2(w 1 < W )are the natural frequencies of transverse vibration.

Putting ql - U and q2 - V, the Lagrange function corresponding to equation (2)

with E - 0, can be written as 1
1 .2 + 29( 2 -2 2 2 -2 2j

2 . [q1 + q2  1 q 2 - q, 2  - I - 9 1 (W2 - Q)q2 ]

I
I
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Now making use of the relationship ql " Pi + Qq2, q2 - P2 - q1, where p is

the momentum vector conjugate to 9, one can write the Hamiltonian as

-2
W 0 0 -Q

1 gT, T1 S = 01 -2= sT2(g2 0,

0 0 1 0
-9 0 0 1

-2 2 -2

In the above equation, if w1 < < W2 S is positive definite and the

unperturbed system is stable and the eigenvalues of the system with E = 0 can

be obtained from the equation IJS - p 11 - 0. The eigenvalues are distinct

and ir.-ginary and are given as

-2 -2 22 -2) 21 2 !/2 -/2

r W lr = ±i(wl + w 2 ± 1 - 2 1~2 w 2 /

The Hamilton equation of motion can be written as

0 -I
SJSZ - E { B I B 2 F(t)}Z , where z - (gp), J =

I 0

(3)

Now consider a canonical transformation Z - Ty where y (Q.PJ and

a 1  -a 2 Y2  -a 1  -a 2Y2 "

T a lY1 a2 al Y1 1 -a2a B 1  -a 2a 2  alIB 1  a 2 B 2

al1 I  a 2 82  -al I a 262J

2 - -2 -2)2 _-2 2

Y l -1 m -1 2 W2 (- ( 2

Y1 " 29w 1 ' 2 " 2nw 2



81 . W - ly1 , B2 ' (&32 -y

a1 . - W1Yi 2 Q 2y2

" (2(B - =a I )) 112

Since the transformation is canonical, the matrix T satisfies the sympletic 3
condition, and the inverse of T can be obtained as

T-1 = T T3

In addition, -1 ST =U

where 02 - dig 1w1,w 2 ;'lw 2 1. Thus, Hamilton's equation in the new

coordinates (Q,P) can be written as

Q - P = - C jP(A 1 1  12 P) + E F(t)(A 2 Q + A 12P ,

- - 1- =- 1 A I- 2- 2 -

(4)I

21 22 112 A21 22I

P + a Q - - {(pA Q + A P) + 1 F(t)( Q + AP)} ,
- - 1 I- 2 - 2-

where I

ra2 (1Y2 al (y ' y-a 2(1 y) a a2(y1 -Y2 ,AII[ )  -1 12( 2 1 2 a 1 1 2 + 1 2

1 L 2( +Y 2) a a(y -Y a A1 Li 2(-y 2) -a a(Y+y~J

[(iY a1 2 21 2 1 a1 2( 1+Y21

I
A1aaA 

aa(-Y ) -a2( 1 Y2a 2 W1(1y a a(1-Y 2)i '
2~ a a., -lY ) al a [ C1_ y ) C2 ..i+y. 2 )I

1 21(1-y (al2801 2 2
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I

a F 2(aBY a, a2[g( fY2 ) 2--18]
12 1 1 11 2
2 a Ia2[g(1+yiY 2 ) -[l,-Y2BI]], a21[ 2 +Y2 a2 ]

I
21 1 1 1, 1a2[(1+I1 aa 2 [g(1+YY 2 ) - (aI-Y 2oI)], a2(B2 +Y 2 a 2 )

-a 1a a 2[g( 1 Y1a[g (1-Y 2B ]  2 2 2
a 2 ~aw (1+Y 2) -a 1 2 [g 12 2 12 jC2 2 W ( I Y 2 ) ]

L. a Ia 2 1g(1-Y 1Y2) - a 2(+Y 22 ]

Introducing a new time T = vt, detuning parameter A, and a coordinate

transformation

- PCT ic T - r T Cr T5
Qr = i( r e  - zr +ze

l where <r Wr/ ' V = W(1-EA), Zr are complex variables with

conjugates zr, in equation (4) yields

2 2 +S n [(D. + iH )COS(s - K

I = z ) A Z 2w jrs jrs 

+ i (Dr + iH )sin(k - 1Cr)Tz (6)

S[Cjrs  iH 5 )cosC(~ + i )T - i(D + + n )sin( ]

3-1 +r ire s r Djrs Ijrs) + r
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where D = A(22). A( 1 )  H± - A(12) A (2 1 )  12
jrs jrs ±  jrs ' jrs jrs ± jrs ' = C (t),

1/2hcs Ia
n2 (t) hcosT + f(T/v) and the corresponding equation for zr can

be obtained by conjugating equation (6). m

Approximation to Markov Process 3
To a first approximation zr(t) may be replaced by the solutions of

'averaged' equations using the method of 'stochastic averaging'. According to 3
this procedure, the deterministic terms on the right hand sides of equations

(6) are averaged in the usual manner, while the stochastic terms are replaced I
by their averaged mean plus equivalent fluctuational parts: the details of 3
this procedure may be found in [13]. Applying this procedure to equations

(6), it is found that the parametric excitations contribute to the averaged I

equations only when the frequency of the harmonic excitation is in the

neighborhood of the value 2w, m + W and JWm - w9 I; Em = 1,2. Thus, for the I

subharmonic case, i.e., 2K = 1, the averaged equations take the form

124
1/2.d r=12,

dz = - E[-rr i( r  rr )]Z rdt + a *dw. r =1,2,; r * 
j=1

(7)

dz9 =(A - -L ih [a(1Y) ]z}dt
0

+IC/2 4I

+ / E a9. dw , t 1,2; t * r
j.1 tJ J

+ I
For combination resonance of the type wo = 1 + =2P the averaged equations

take the. form; I
I
I
I
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1h

dz1  - i - i( 1 -a 11 1 [a 1 a2 Y 1 - Y2)]2ldt
0

/2 dw (8)

I j-I I J

-r )l -a a )]z fdt
dz 2 = - £{[822 + i(AK 2 - a2 2 )]z 2 + 2 a2 1 - 2]

1/ 4
1/2 E a dw

Similarly, the averaged equations for o 
= 1w, - w21 takes the form

dz1 " - 1- - a1 1)]Z1 + 2w0 [a0a2 (Y1 + Y2 )]z2}dt

1/2 E a dw (9)
j=l

dz2 = - £{[22- i(( 2 - a2 2)]Z2  2- [a2a2(Y1 +Y 2 )]zldt

1/2
+ 1 a . d w .
=I 2j

i In the above equations

1{r /Yr) A2  2 )2S f(2
rr 'r (2 _ )2w 2 {{r rfr rfS 

/Yr ~ 1/yr 2 Sf ( 0 ) - (Yr 1/y 2 (-
8rr = < {r _ US ) /YSfC) - rfo

1 + ()2  - Ys2

(Yr 3 S ( _Kr S(K + K (10a)
-rYs ff r s Y r Ys
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a a2  -y 1 /Y 2 (1 +(Y r s)2  A
rr 2w2  r r ff r Y rS

0

CY r -Y s)2
YrY s r +C • )l 3

0aTi r~s a 2 z I + / )Y+ 1/y)S (0)

r = 2 r-i s~ rZ( r/h l/ ff

+ r s) Y Y Sf(kr- k )l r,s = 1,2.
r s

2

[Tr,s T _L fzz)[ + 1/ Y)2 S 0)(Y * l/Y) 2S (2c)

0 1
(k + -Y 2

_' S ( - k r s ( "

rrsrs

[j A2 lz +Yrff2 ( k
r,2+s T - zs[(yr+1/yr)(Y s +/Y S) Y Y -f r 2 ;)]

rs r3

0 s

Sff(w) - Rff(T)coswrdT , d ff(w) = f R (T) sinwTdT , A = /(w 2 - W2)

of0fff 0 ff 1 2

Wj(J = 1 ,2...2n), are independent Wiener processes of unit intensity and the I
remaining terms are as defined in the previous equations.

It is worth pointing out that for the white noise case, i.e.

S(W) = S0 and *(w) 0 0, the above quantities reduce to 3
I
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8rr . ) 1 2 - 2 - 2 _ )} 2rr

00 Ti ()r+s A (Zr * M2 ) + (1-6r)Y + Y 2
rs 2 YY s r s rs r s or s

r,s 1,2

QTi 2 2). jz /Y +y - z5 Y r sIs (10b)z ~ ~ y ' + 1 //z
r,2 r 2 -r r - r s s

W0

ros, r = 1,2

[ooT] _ A 2 (Z s Y
2 + 1)(Y 2 + i) + (Y - Ys 2 S

r,2+s 2 YY s r s r 3 oS r S

r s, r,s = 1,2

Stability Analysis

First moments stability is considered in this section. The

differential equations governing the first moments are obtained by taking the

expectations of both sides of equations (7-9). It is evident that the

resulting equations will be the same as equations (7-9) with the stochastic

terms absent and the variables zr, zr replaced by their expectations. Since

these equations are linear, the conditions for stability in the first moments

can be found readily with the help of the Routh-Hurwitz criterion. In the

remainder of this section, the moment stability conditions are obtained first

for the subharmonic resonance case wo = 2wj and then for the combination type

resonances, w0 " 1 1 ± 2 1

Subharmonl c Resonance

Setting I - m and K. 1/2 in equations (7) we obtain the following

stability conditions
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U
8rr > 0 r = 1,2, r m (1 la)

(- 2 ;2 
,

(I - 2a - Vi/0)
2 > I (h-)2 ( '4 - ) 48m2 , m - 1,2, m *r (11ib)3

mm 0 2( W2~ -2) 2 m

It is evident that the results for the case of harmonic excitation 3
(at w° = 2wm) can be deduced from inequalities (11) when the stochastic terms

are removed. The conditions (Ila) depend only on the damping term and the I
stochastic part of the excitation, whereas the inequality (lib) is a

modification due to the stochastic term of the known stability condition

derived for the case of harmonic excitation.

Combination resonance : o = wll ± w2j

For combination resonance, we begin the analysis with the

case K + K2 = 1. For this case, the stability conditions are found to be I

8rr > 0 r = 1,2 (12a)

2I
- + a2 )- ) > 2 ]I/, j12
(I all + a 22) V/W0)2 > E211811 /822111/2 + [8221/8lI~ /2I

-2 ()W 1 1 (-+ 2 - o )
2 2 - 81 (12b)

2w - 2 ) wI2 2

0 1 2 w'

It is evident that for 811B22 > 0, we must have 0 < w for the existence of

stability boundaries in the (h,v/w0 ) parameter space. Similarly, the

stability conditions for the case J'l - c21 = 1 are found to be 3
0rr > 0 r - 1,2 (13a)

I

I



E-12

I

X _ (!) ~ 2 - - 2 a ,(13b)

2w 2  (W + W2)2  
11122

2

i1 w1w2

Furthermore, for 0 < W and 8rr > 0 the system will be always stable.

Again, the conditions (11a), (12a) and (13a) depend only on the

damping term and the stochastic part of the excitation, while the conditions

(11b), (12b) and (13b) are modifications due to the stochastic term of the

I known stability condition for the harmonic excitation. In the absence of

stochastic excitation or when the stochastic excitation is a white noise, the

conditions reduce to the inequalities for the case of harmonic excitation,

withI
[2 r2 2 

- + -2 ai2w 2  (wI 1 T.W 2 )  1 1 2

o1[2 (W 2 +i - ,2 2Q 2 )-

(22)± 2w2 ) T--i2 2( 1 2Q ]
0

1 22 W2 2 2  1 2 2 2) 1

I It is obvious that for the undamped system ( 0 - 0) the first

moments are always stable (critically) when wo = w 1 + W2 and

wo = 1w1 - w2l in the regions Q > w2 and fl < wit respectively (see Figure

ib). Since the natural frequencies are ordered, w1 > w2' and the

inequality 2 2 < 1  2 - 2 2 2  holds, when the damping is

present (€ e 0), for -2 < , we have (811022)l > 0 and

(11 > 0, (82 2 )± > 0 and the stability is governed by the conditions (1Ib)

and (12b) for the cases 2K = 1 and c 1 2 + K , respectively. Furthermore,

for 2 > ;2 we have (011Y, > 0, C022)± < 0 and (01 1'2 2 )± < 0, implying that
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the first moments are always unstable regardless of conditions (11b) and

(12b). This indeed agrees with tIe results of Chetayev C14], which states

that the addition of complete dissipation will destabilize the system which

was originally stabilized by gyroscopic forces. Thus, one can conclude that

for white noise excitation first moment stability conditions are identical to

the stability conditions of harmonic excitation and the addition of damping

destabilizes the region 2 > w2 However, when the excitations are not white

noise but a band limited excitation then it is evident from Eq. (10), that by

choosing the spectrum of the excitation near 0, 2w rW + W 2' Iwl - w2f one

may stabilize the system in the region 122 > 2 , and is explained below.

Returning now to the non-white noise excitation, consider some

particular forms of the excitation spectral density S(w) which vanishes

outside the band with w - 1/2 Awo < w < w + 1/2 Aw0, such that the

correlation time is 0(1/AW). Therefore, if Aw° >> e, the Markov

approximation by the use of the limit theorem will remain valid. Thus,

considering wo 0 0, and o w, + w2l will definitely make 811

and 822 positive for large values of So as is evident from Eq. (10). It may

2 -2
be noted that Y1 Y2 > 0 for 2 > 2. Thus, by appropriately choosing the form

of the excitation spectrum, an unstable rotating system can be stabilized.

Second Moment Stability

Even though the calculation of the explicit formulas in terms of shaft

parameters for the mean square stability is long and cumbersome, the equations

governing the second order moments along with their characteristic equation

are given below. However, when the periodic excitation is absent, explicit

mean square stability conditions can be obtained directly by letting h be

identically zero. The differential equations governing the second moments are

obtained by taking the expectation of the Ito equations corresponding to the
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norm I zrz, r - 1,2. Thus, applying the Ito differential rule leads to the

following equations for the cases KI +  12 1 and - 2 = .

Case 1: I 1 + I 2 = 1

d z s11  <z
Ft <ZlZ1 > - 2€[ ° 1 11 + 11] <Z1 1 > + [S12] z2 z2>

iH+ [<z1 z 2> - zI 21

dt

il [<z <z2I zS 2 >] I

- iH [<ZlZ2> 1 Zi2>

d+ S+ +2 2S 2czi [<z >1

= ~ 1 ~-[ a 22) 0 (s, 212) + 'X z1z2>

dt

Case 2: (I - 2 = I

U _ H- [<z1 z2> + <ZlZ 2 >]l

d_ <z 2 z 2 > . 2c{[S12 <zz1> + [- 822 + $22 <z2Z2> (16)
dt

SH" [<ZlZ 2 > 1 l2>]

d <z1 2> = 2c[H-[<z1 z1 > - <z2 z 2 >]

+1[- (S1 + +2) (S€- + 2S12 + ix,] <zlz2>1

2 (s *8 s +2 x11 22 00 12 1 2

where

So0A 2  +( -2,2 . 2 2 S A2 ( 2 - / n2 211 " 2 - 2 ) / 1-} S2 2 - 2 2 2

I 0o
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U
2 -2 -2 2

S ...2..A. + w 2 - , H- - h(a a(Y ± Y
12 2 W W0 121 2

Soa2  ± 2( 2 + - 2 02 + N
t 0 (W1 ±  W2) W 1 w2 - 2 2. IS;€ w°2  4a 2 WlW42

and the rest of the terms are defined in eqs. (1Ob). In deriving eqs. (15)

and (16), the stochastic excitation is assumed a white noise.

Seeking solutions proportional to exp (t), the characteristic

equation for the exponent 7 is obtained as 3
T+ a3 3 a2 2 1+ al + a0 = 0

where ai's for both the cases are given in Appendix - A. It may be noted that

even though the matrix equations (15) and (16) are complex, the characteristic 3
equation is real and stability conditions can be easily obtained using Routh-

Hurwitz criterion. Thus, the mean square stability condition can be written

as 3
2 2

a. > 0 and ala a > a2 - a2a
1 1 23 1 3 0

Due to the complexity of the algebra, explicit form of the stability

conditions in terms of system parameters are not derived. However, when the I
excitation is purely stochastic (white noise), the second moment stability 3
conditions can be derived by letting h =0 , T w 0 t, and Sff(Cr) = WoSf'f(W r)

in equations (15) and (16) as 3
I
I
I
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I

(C/o ( 2)[412 + (4-, > o 1-11 W 2),

S22( 2 - 2)

+ 4 1 1 - 2

(Co 2)[42+2 i62)] - 8 2~S + (1-W ) 2 (17
12 - 2 w 2  1

I6 2(2 - 2)2 - 162 CS0][W w) 4 2

1 ( 2 2)2 - 2)2 -W 2[ 1 2

The mean square stability results for the non-white noise excitation is given

in Appendix - B.

Special Case: Shaft with Symmetric Cross-Section

3 The results presented in the previous sections can be reduced further

for a shaft with symmetric cross-section and the simplified stability

Iconditions are presented in this section. For a shaft with symmetric cross-
-2 -2 -2

ection, i.e., = ua the natural frequencies of the system reduce

to -w andw 2  -Qwhenw>Q. For this case, the value

3 of 'I = - '2 - 1. The first and second moment stability conditions are

obtained for the case kr + s  sc and are given below.

codtosaepeetdiIhsscin o hf ihsmerccos
-2 -2 -
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First moment stability condition

(1) non-white noise excitation3

(1-2a - v/2;) 2 > U / j 1 1 2 + (0 jB )1/21 2 .(-8-) 2 h2  - 2

- /~) >'11 22'' 22 11 -2 11 221

(18)

where a 4)-- p ffol) iI

=(L- [ S.2  [ (0) -S. (1)II

(2) white noise excitation

)> c2jw-a112 -n 12 2 2 22 2(-2

(I-v/2;] {(.Z- + (2) h .( W - f22)} (19)

Second moment stability conditions (white noise excitation) 3

16H 2 (D - 2S) A2[4S - D(I - (W;)2J] (n/) 2 D(D + 2S) 2

+ D(12S 2 - D2 ) + 16S 3 < 0

a1 = 16H (D + S) + A ((/S) 2 D2 (D + 2S) + D(12S2 - 2D2) + 8S 3 < 0

1 2 + (Q/) 2D2  6D2 + 12S 2  0

4a,(16H2 (S-D) + A2 (D+2S) + (01-) 2D2 (2S-D) + 6D3-12DS 2+8S 3 ] -D3p < 0 3

where3

P . 16H 2S + A2(2S . (,/;)2d) (/ )22sD) + D+8s3 > o

H = 2 S 0 4 and D

16W 2  32w 2w :U
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I
As before, for the case of purely stochastic excitation, i.e., h s O,the

stability conditions reduce to

I s ff (2W)

2(w2 _ 2)

for the case w > Q. However, for w < Q, instability always occurs.

I Furthermore, for a a 0, the above condition reduces to the well-known results

of a column under random axial loading.

The numerical results for this special case for various values of H,

S, D, w and 0 are given in Figures 2, 3, 4 and 5. In Figures 2(a) and 2(b),

the first and second moment stability conditions are plotted respectively for

different values of damping parameters. In Figure 3, the first moment

stability regions are compared for the white noise and non-white noise

excitations. For the non-white noise case the stability region shifts to the

right. The first and second moment stability regions are compared in Figure

4. It can be seen that the second moment stability region is smaller than

that of the first moment as one expects. Finally, the mean square stability

conditions for purely white noise excitation is given in Figures 5(a) and

5(b). The stability regions are compared for different values of the shaft

I speed a.

I Conclusions

An analytical method, based on sympletic transformation and theory of

both deterministic and stochastic averaging has been presented for

investigating a rotating shaft under combined harmonic and stochastic

excitations of small intensity. Since a rotating shaft being one of the most

fundamental components of many mechanical systems, such forms of excitations
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are realistic ones to assume in many practical situations where the

disturbanrce arise from both deterministic and non-deterministic sources. U
The equations of motion were first transformed to first order

Hamiltons equation and applying appropriately deterministic and stochastic

averaging, the state variables under suitable conditions, converge in a weak I
sense to Markov vector which satisfies Ito equations. From the Ito equations,

conditions for first and second order moments were obtained, with the aid of 3
Routh-Hurwitz criteria. It was shown that the results for harmonic excitation

case can be obtained from the first moment stability conditions by making the

stochastic terms identically zero. For the white noise excitation, first i

moment stability conditions are identical to the stability conditions of

harmonic excitation. Furthermore, it was observed that stabilization of 3
harmonic parametric instabilities are possible when the excitation is band

limited with certain spectrum. I
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I
I

Figure Captions I

I
Figure 1(a) Rot3tlng shaft with pulsating axial load.

(b) Stability boundaries for the deterministic undamped case.

Figure 2 First and second moment stability boundaries for h 0 and f(t) I
is white noise.

Figure 3 Comparison of first moment stability boundaries for white noise

and non-white noise excitations. I
Figure 4 Comparison of first and second moments stability boundaries for

the white noise case.

I
Figure 5 Mean square stability boundaries for purely stochastic (white

noise) excitation (h =0).

I
I
I
I
I
U
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Appendix -F. I

Mean square stability condition tor purely stochastic but not white

excitation
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APPENDIX F

INTRODUCTION l

In the 60's, rather unusual and severe bending vibrations were

observed on the trans-Arablan pipe line, which at that time was a la-ge

above-ground oil pipe line supported at 20m intervals. Several analysis I
were carried out by Ashley et al [1), Housner [2) and Long [3), but none

was able to predict the observed frequency of the vibration, nor could

explain the origin of the motion except the fact that both free and forced

motions due to cross-winds may create these observed phenomena. Housner

[2] did, however, indicate the possibility of a dynamic instability of the 3
pipe at certain c-itical velocities of the fluid which he related to the

bucklr' of a column. These results were verified experimental>y sometime I
later by Dodds et al [4]. This phenomenon was due to the terms that

represent the Inertia forces produced by the curvature of the pipe, and was

not included in the equation of motion presented by Ashley et al [1]. Long 3
[3] used the equation of motion presented by Housner and calculated the

frequencies of vibration for various end conditions by a power series I
method.

1.1 Literature Review

It rfecr-n that th first Investigators of pipes conveying fluids I
mentioned in the previous section are Ashley and HavIland [1] and Housner

[2]. A subsequent elegant study was made by Niordson [5), which led to the

same equations of motion as that ottained by Housner [2] and to essentially 1
the same conclusions regarding stability of pipes with simply supported

ende. Furthermore, Niordson presented a treatment of the problem rased on

-h.1ll theory and derived the b-an eqatlon as one approximatlon. Late-, 3
I
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Handelman [6] presented an analytical method In which the character of the

elgenvalues of the problem is determined from the structure of the

Sdifferential equation of motion without determining specific solutions.
The existence of oscillatory instability (flutter) was fully

I explained in two outstanding papers by Benjamin [7]. These papers deal

3 with the dynamics of articulated pipes (consisting of rigid tubes cr ,-C- A-

by flexible joints) conveying fluids, which is a discrete representation of

the continuously flexible system. In this work, he found that a

cantilevered system of articulated pipes was subjected to oscillatory

Instability. Benjamin was the first to perceive that the dynamical pro',.m

is independent of fluid friction, and also pointed out that the buckling

instability is possible In the case of a vertical cantilevered svste ,

where gravity Is operative, if the fluid is sufficiently heavy.

Gregory and Paidoussis [8] have shown theoretically and

experimentally the stability of cantilevered pipes at .sufficiently high

velocities. The stability of tubular cantilevers conveying fluids

(neglecting gravity forces) was further discussed by Nemat-Nasser et al [9]

with emphasis on the effect on the stability of velocity dependent forces,

such as dissipative and Coriolis forces, they showed that such forces may

destabilize the system. Subsequent papers by Herrman [10] and Herrman and

Nemat-Nasser [11] stressed the connection between the problem of

Instability of cantilever conveying fluid and the more general problem of

instability of a cantilever subjected to a "follower" type force at the

free end, i.e., a force retaining the same angular disposition relative to

the free end in the course of small motions of the cantilever. The effect

of Intern:! pressure on the stability of pipes conveying fluid was studied

both theoretically and experL.:entally ty Naguleswaran and Williams [12. '
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it was reported that pipes with both ends supported may buckle even at low

velocities by the action of internal pressure. Chen [13] studied the

stability of a pipe conveying fluid with the upstream end clamped and the

downstream end constrained by a linear spring, so that the boundary

conditions are Intermediate between those of clamped-free and clamped-

pinned conditions, accordingly, both buckling and oscillatory instabilities

are possible In general, depending on the spring constant.

In all the studies discussed above, the flow velocity was taken to 5
be steady. Chen [14] examined the stability of simply-supported pipes

conveying fluid with a flow velocity, U, which has a time dependent 1

harmonic component superimposed on the steady .velocity U0, Such that U =

Uo(i + Poswt). He found that parametric instabilities could happen In

such cases, and also determined the boundaries of stabIlity-instability

regions, moreover, he found that parametric combination resonance are also

possible. Chen obtained the equation of motion by substituting U(t) in the I
original equation of motion obtained for steady flow. Hence, Chen's 1

equation of motion did not take into account tt_ longitudinal acceleration

term and, therefore, is erroneous. Paidoussis and IssJd [15] considered 3
the case of a harmonically varying flow velocity U = U ( + ucoswt),

rederived the pertinent equation of motion, correcting the e-ror in Chcn's 1

formulation, and extended the analysis to boundary conditions other than

simply-supported. In this study, they obtained the regJon! of

JnstabJlJties in the (w,w) parameter space using the method proposcd by 5
E:lotin [16]. It should be pointed out that these authors obtained only

the regions corresponding to subharmonic resonance, and wrongly concluded

" -!7 Jnaton reqonance cannot be obtained using the same method.

Recently, Ariaratnam and Sri Namachchivaya [17] presented an ar.aytIcal 1

I
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method for the stability analysis of pipe with flow velocity U =

Uo ( + ucost) for both subharmonic and combination resonance cies.

Non-linear analysis of flow Induced planar motions was presented by

Thurman and Mote [18] for a pipe with simple supported ends conveying

fluid. The analysis was carried out using perturbation technique and the

a5rncrs found that, in determining the natural frequencies of the 3ystem,

the important of ncn-llnear terms increase with flow velocity, so that thi

range of applicability of linear theory becomes more restricted as the flow

velocity increases. It was also noted that as the fluid velocity

Increases, the effect of the longitudinal tension variation during

oscillation becomes increasingly important. More work on this line was

done by Holmes [19] and Rousselet and Herrman [20].

An analysis taking into account the circumferential modes

e.ipe:il.y for short oie. was made by P1 ~oussi and Denise [21,22]. They,

analyzed both cantilevered pipes and pipes with clamped ends and fo:und that

in addition to Instabilities in the beam modes, instabilities in the

circumferential .odes are also possible, and verified these findings by

experiments. Similar theoretical results were obtained later by a

different analytical method by Weaver and Unny [23] for simply-supported

shells. Chen and Rosenberg [24] studied the fluid-shell interaction

characteristics in the small flow velocity range less than the subcritical

flew velocity considering the fluid to be ideally compressible.

1.2 Scope of Present Research

Although the Hamiltonian approach given in [17,25,26] Is elegant,

the meaning of the physical variables are sometimes lost and the effect of

damplg may no' be f-lly Incld3d, moreover, the equations cf
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I
supported pipes conveying pulsating fluid contain nonconservative

parametric excitation terms. For these reasons, a non-Hamiltonian approach

is used to develop an analytical method for studying the stability and 1

bifurcation behavior of supported pipes conveying pulsating flow.

The nonlinear dynamical system under investigation Is formulated in

detail In Chapter 2. In addition, various transformations are made to 5
derive a set of equations in "standard form". The stability boundaries and

bifurcation behavior of pipes In the presence of parametric excitations for 1

the cases of subharmonic and combination resonance are discussed in Chapter 3
3 and 4, respectively. The numerical scheme developed for calculating the

stability boundaries and bifurcation paths for large parameter valics. '.r C

the autonomous, averaged equation is presented in Chapter 5. Finally,

Chapter 6 summarizes the conclusions of this study. 1

I
I
I
I
I
I
U
I
I



F-6

I
I

STATEMENT OF THE PROBLEM

i 2.1 Problem Definition and Formulation

This research investigates the transverse motion of a uniform pipe

of length L, mass per unit length m and flexural rigidity El, filled with

fluid of mass per unit length M, with various support conditions In

general, the fluid flow field will be affected by the lateral vibration of

the pipe, similarly the fluid interacts with the pipe itself and alters the

vibrational behavior of the system. In this study, the fluid is considered

to be incompressible and Inviscid, flowing in a pipe of constant cross-

sectional area and perimeter. Furthermore, the effects of pipe motion on

the fluid are not accounted for, while the effects of fluid on the notion

of pipe is considered.

The equation of motion is Ierived ty sing t e energy PrincipLe.

The methodology presented herein is similar to that given in C15]. For

sufficient accuracy a linear moment-curvature relationship is assumed. The

potential energy of deformation or, equivalently, the strain energy of the

system, considering first order nonlinearities in the axial strain is given

by

_a +-j wt + .1 Y12 d x + L I y'' dx. (2.1)2EA O ' 12] 2I ,

o 0

where w and y are the longitudinal and transverse displacements, To is the

externally applied tension, and prime represents differentiation with

respect to x. The kinetic energy of the pipe Is

T1 - y dx , (2.2)

0
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I

where dot represents differentiation with respect to time t. Furthermore, I
the fluid kinetic energy is I

M t t g,)2r[ ,1 2) 2
022 ]2 dx (2.3)

where the axial contraction in the x-dlrection Is expressed as 3

Co  1 (y'(,t) 2) dE .
0 I

Benjamin [5] has shown the statement of Hamilton's principle for a pipe

conveying fluid, In the absence cf dissipative forces can be written as-

6 f (L + M u2C ) dt - f2 Mu(; + uyI) 6y{ dt , (2.4) 1
tI

where the Lagranglan L = T + T2 - U and subscript L represents the values I
of the corresponding quantities at x = 1. Specifically, for supported 3
pipes, since C 0 and Y = 0 equation (2.4) can be reduced to

t2
6 f Ldt - 0. (2.5)

Substituting equations (2.1), (2.2) and (2.3) Into equation (2.5), one 3
obtains

6f u2 d t 2 fl [(M ,J i2 Mu(iy' + uy, 2 )
6f M d 2 2

T
EA _2+,+ 1 Y,)2 _El ,,2]xt
A 0- + 2 E 2 -dxdt - 0 (2.6)

I
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I

By applying the usual variational techinques to Eq. (2.6) the equation of

small lateral motions is obtained asI
(M + m) y + 2Mu ' + y'' - TOYi + Mu(t - x)y'' + Ely IV

3 , EA LI' + y1 )y'J 0 (2.7)

I The corresponding boundary conditions for pinned-pinned and

clamped-clamped pipes can be written respectively as

y(o,t) = y(I,t) - 0 , y''(o,t) = y''(t,t) = 0

y(o,t) = y(Lt) = 0 , y'(o,t) = y'(Lt) = 0U
one can define an average axial strain c (t) as0

ItI 1 2 )d x  f dx%(t - ; w' y')x }T f (y') 2 d
0 o

3 Substituting the above equation in Eq. (2.7) yields the equation of the

transverse motion as

U2
(M + m)y + 2Muy' + [Mu(Z-x) + Mu2I

T0 -2L fl (y,2 dxly'' + EIy IV - 0 . (2.8)

3 By defining the following non-dimensional quantities

AL - ( _)1/2
21 = + M
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2 _ I

- T 0 t2 1/2 1/2 E* 1/2

E El Mm M2 E(M + m) 3

and incorporating damping terms, the dimensionless equation of motion is

obtained as U
-E A V + n1 V + [ - + (1-C) Mr ul ill + 2Mru ' + n

K1" if 
(n,)2 d' - 0 (2.9) 1

where the dot and prime of the above equation represent the differentiation

with respect to new time t and E, respectively and E* is the coefficient of

internal dissipation which Is assumed to be viscoelastic and of the Kelvin- I
VoIgt type. Furthermore, the nonlinear damping terms such as 3

E* [ i ') dx]I 2
0

are assumed to be small. The fluid velocity is assumed to be harmonically I
varying and given by u = U0(1 + veosJ), where u0Is the mean

velocity, v Is the frequency of the parametric excitat1on and w ir thr

amplitude of the periodic perturbation which Is assumed to te small and of 3
the order . Thus, one can approximate u2 2 2icosvt) The

discrete equations of motion corresponding to equation (2.9) are obtained I
by the application of the Ritz-GalerkJn method. Thus, approximating the

transverse motion by

n(Et)- r *r (E)qr (t)
r-1 U
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where qr(t) are the generalized coordinates and Ir () are the eigenfunctlon

corresponding to the free undamped vibration of a beam satisfying all the

boundary conditions, the discrete equations are evaluated as

I2 - U
Iq + 2M u Bq + [A (U - )cjq +

M C{hvD1q sinvt - h[D 2q + D 3q]cosvt - E*Aq (2.10)

where 3U/3q represents the nonlinear terms, u - Eh, E* = cE*, A = diag

4 , ..... 4} the I's being the In vacuo eigenvaluea (with no "'ulh)

of the system. DI D2 and D3 are constant nxn matrices defrined as

D1 = M u (C-D) , D = 2uoC , D3 = 2Mr u B

where B, C and D are constant nxn matrices, whose element.i b rs, rs .nJ

drs, respectively, involve integrals of the eigenfunctions and are given by

II

rs 0 '(r ) (E) d
brs f 0 4;r(&) Os(E) d&

U0
d E4 "(E) ,11(E) dE,

Crs 0 r

3dr = f O( *''( ) d.

0

Furthermore, this study considers only geometric nonlinearities of the type

given by

CiJkt qqj qkqt ' where C ijkl - Cij Ck,

k - (AL)/(41) for pinned-pinned support condition and k - (AL)/(21) for the
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I
rest of the support conditions. Thus, equation (2.10) describes the

parametrically excited motion of gyroscopic, discrete, nonlinear

mechanical systems with n degrees of freedom about the equilibrium 3
configuration q -0 

2.2 Transformation to Standard Form

For the purpose of studying the stability and bifurcation behavior 3
of supported pipes, the system Is Investigated by restricting It to a two-

mode discrete equations of the form I

q - 2Gq2 
+ K 11 - cF 1 (q,,') , (2.11a)

2 1 22 - I

q2 4 2G q K 22q = EF 2q,q ,tJ, 2.11b)

where 3

Kl Mr o 12

11 I
4 C-2 C

K 11 1 4u 0T~

22 2 0 22

In the above equation, dot represents the differentiation w.r.t new time 1,

where w 0 = vt, v = w, (1-c), and X is the detuning parameter. The 3
0 0

expressions for F1 , F2 contain nonlinear terms, damping terms and detuning

parameter of the system. It is obvious that the equations (2.11) do not

have an exact solution. It is, therefore, Important to use an approximate

method which offers a very elegant summary of results. One can use, for

this purpose, the method of slowly varying phase and amplitude which takes 3
advantage of the well known process of averaging with respect to time r.

Now, In order to apply the method of averaging, one must transform Eqs. I
I
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(2.11) to a suitable "standard form". This is achieved by meanq o" a

I transformation baied on the solution of the unperturtl -. y ..

corresponding to c - 0 of Eqs. (2.11), I.e., by assuming

I LI T -iW It 12( Tr 1W2 Tql 11 12e  213e  142e

q 2 =Q21 3eI+ e Q + Q 14e

I 1Q11 e  - a IQ12 e  + 2Q13 e  2 Q14 e

where w and Qjj are the elgenvalues and the i's eigenvector of the

unperturbed system, respectively, a i is the mode ratio of the unperturbed

system, one can obtain

ql zlsin(IT + @1) + z2sIn(w2T + 02)

= z 1 sn41 + z2sin$2 , (2.12)

q= z1 WIC°S 1 
+ z 2W 2cost 2  " (2.13)

Similarly

q2 CL1 z1 (co( I1T + 01+ & a2z2cos(W 2  T +2)

- a1z1cos 1 + a 2z2cost2 , (2.14)

i 2 = - zaIWIsI n 1 - z2 a 2w 2sint2  (2.15)
2 21/12 I12

where Z, M V2 (Q21 + Q 2 ) 1 1 / (Q12 + Q2 1)
2

2 2

w1  - K11  2 - K11
°'1 ' 2G I1 aL2 2Gw2
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By assuming both Z, and 0 to be dependent on r Eqs. (2.13) and (2.15) 1
become 3

sint1 + Z2sint 2  z 1Z cost1 + ;2Z2cost 2 - 0 , (2.16)

a cost 1 +a co2 -c 2 ;lZI sint - a2;2z2 sin 2 - 0 , (2.17)

substituting ror qi,qq in Eqs. (2.11) yield

Scost 1 - $Zlsin 1 ) + W2(Z2cost 2 - *2Z2sInO2) = cF1 , (2.18) 1
and 3

- lal (lsin('1  Z coFl - w2a2Z 2 Sn:2 * ¢2Z2 cor 2 ) = (2.19)

respectively, the above Eqs. (2.16) - (2.19) can be written In the matrix

form an I
sin4 cost¢ sinO2  2 1 0

a cost1 -0 sn 1  a 2sin 2  -a sint2  Z = c 0

1 'oo1 -W1 s ( 1 2co t2W 2'i 2 2 1i

-a lsnO1  -W a1 cost -W2a2sin¢2  -W2a2cost ,Z F,
(2.20) 1

Premultiplying Eq. (2.20) by the matrix S given as 
(.0

W A 2si n4) W 2A1cs1 0261cost 1 a2 sliI 222 OO 1 - 2 A1sint1  a2A 1sin41 A 2 o 1

cos W A sin W A cint co"( 62s I
-W1 1A2e 2 2  W1A1sJnO2  - 1A 1sJnO 2  A2eos 2

I
where AI - Qa - Wl I  A2 

= W I -C i 2 ,A- I •A1 22 11' 21 C2, A1 I
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I
yields

I 0
0S (2.21)2 2 F I

Equation (2.21) are now in the standard form and are exactly

3 equivalent to the original equations of motion (2.10). By using the method

of averaging, which is a first approximation of an asymptotic method, the

averaged equations corresponding to equation (2.21) are written

3 ymbolically as

dz/dT- E M [ Xz  d/dr - E .(X ) (2.22)

t tfT

where the averaging operator is defined as M () tim T f (.)d , and
I t To 0

the Integration is performed over explicit time T. According to the

I matnematical basis of the method of averaging, if the averaged equations

3 (2.22) have solution z (T) and (T) then the solution of Eqs. (2.21) will

remain In a small neighborhood of 0 (t) and 0 (t) for all time since the0 0

right-hand sides of equations (2.21) are periodic. Furthermore, the

stability of the averaged system implies the stability of the solutions of

I equations (2.21) and the averaged equations (2.22) are accurate only in the

first approximation, i.e., z - z + 0(E) , * - € O(E). Now, ty applying

the averaging operator to Eqs. (2.21), one obtains a set of averaged

equations In the presence of parametric resonance which occurs over

specific ranges of values of wr in the vicinity of 2w r mv and

I] k'r t
~  s = mv, m - 1,2,.... where w and v are the nli 7L - '

I
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I
frequencies. The autonomous, averaged equations of the nonlinear system

for the predominant cases (1) 2wr - Wo , subharmonic parametric resonance,

and (2) lWr ± Wsl- o' combination parametric resonance are examined in

the following chapters. i

I
I
I
U
U
I
I

I
I
I'
I
I

I
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SUBKARJ4ONIC PARAMETRIC RESCNANCE

3 3.1 Averaged Equations and General Results

The averaged equations of motion in the first approxinaticn for

- 2W , r = 1,2 are given in Appendix A and expressed as

I Zr elhZ r[Urr in(2r) + Vrros(2r)]  *ErZrI

Z r - Z rh[Urcos(20r) - V rrsin(2r) ] + N - AD r(

rrlwhere the terms Urr and Vrr are defined in Appendix B-I and the remaining

terms in Eqs. (3.1) are defined in Appendix B-i. Since the r.h.s. of the

above equations contain 1/(44) as shown in Appendix B, the time is rev-rsed

3 by introducing a new time T = - r. Now, putting tan 8 - Vrr/Urr, Rr

1112 + Vr)'' 2 and or = Or + 9/2 in the above equations yields

dZ
Z(hR r sin (2;r r * (3.2a)

3 dT - hR con (20r (N - ADr)] (3.2b)

l The stationary states are determined by setting dZr/dT - 0 and dor/dT -

constant In Eqs. (3.2), which, apart from the trivial solution Zr ' 0,

yields an amplitude-frequency (a-f) relationship,

A -±D 1 [h 2Rr2 - (ECr) 2 1/ 2 + Dr -INr (3.3)

Equations (3.3) represent the positive and negative nontrivial solutions,

which are associated with cos 2 ro - Br /(9r h) -- dI-1/2 2 2 2. Bcos 2 ;ro Br1 1 (Rrh) respectively, where Br (hRr -

I
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1

making use of the expression for A, Eqs. (3.3) can be rewritten as 3
v 2[h 2R 2 _(E* )211/2 - 2Z 2 P (3.4)

0 r - -rro r

It may be noted in Eqs. (3.4) that the negative sign corresponds to the

positive nontrivial solution and the positive sign corresponds to the

negative nontrivial solution. I
3.2 Stability and Bifurcation Analysis of Trivial Solution 1

In order to consider the stability of the trivial solution, Eqs.

(3.2) are transformed from Zr, *r to new variables Xr , X by means of the

tran=f ormation

Xr = Zr sinor Xr = zr °°sr

This procedure yields

dX I
r { r hR ri 2r + N r ,0 s l

+ EZ r[hR rcos,(20 r N r AD r]sinO 3

S r (hRr ADr r - Nr X r

d- -EZr[hRrsln(2r) 
E*r]sinr

dT r r r)s r r

Cz r[hRr co(20r) + Nr - ADr]COS0r

-- (hRr - D)X r + E *rXr + N X (3.5)

I
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I
3 It Is evident that the linear part of Eq. (3.5) corresponds to the linear

variational equations about Zr - 0, whose solutions are proportional to

3 exp (pT), where p - p/e is given by

I P2 E*&r t (h 2 R2 _- D 2)1/2
r r

3 Therefore, the trivial solution Is asy-tpt.caly stibla If the fol~y-..,

conditions hold:I
>0 11 - V/"oI > 2[h 2R - (E*& )211/2 ( = 2w (3.6a)

r 0 r r r

However, for the undamped case

P1,2 M ± [(hfr + ADr)(hRr D r)] 1 /2

I and the stability cinditions get simplified to

I v/W < 1 - 2UR r  , v/o > 1 + 2pR r  (3.6b)

3 It Is shown that for the undamped case the trivial solution, which is

stable In the Lyapunov sense, loses Its stability at Dr - ± hRr due to

I double zero elgenvalues. Thus, for E* - 0 and Nr  (X2  Xr)Pr'

Introducing a new time T - cT and linear transformations Xr = Ur + Vr,

Xr  Vr/(2R r )  - Vr/(2Rr) r Ur + Vr , for the cases AD r +

I hRr and ADr - - hR r  respectively, Eq. (3.5) yields

dU v , [(ZrP)U 3 . (6 p *r 2
-d r r r r r r

dT r
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I

3 Pr  2 [2 P r )V3
+ (6R P + 2 v + (2RP +-L+ r ) V]

r 2 r r r r r Rr  8 3  r I

-V F [a3Ur 3 + a2U 2 V + aiUrV 2 ..' aoV3]r 3 r 2 r l1r r O r
dV32

- [(2RPr )U 3  (6RrPr)U V + (6RP+ -t ) U 2

dTr r r 2Rr  r r

P

+ (2R P + -E- v 3 ]r r 2R r
r

r 3 bUr2V + b U V 2 + b0Vr 31
S 3 rb3 U 2 r r Irr Or

The normal form of the above equations are computed with the aid of the

following near-identity transformations

a b 2 2a2 + b I) I13

U T1 a 2 n( ) + 21)3
r r o r 2 r r 6 r I

V = r+ bn 2 + (-) n 2 -a3r I

I

-- r r _r r (3.7)

dT dT

In the above equations, positive and negative signs correspond to

the cases A + 2hRr and X - - 2 hRr, respectively. It is evident from Eq! I
(3.7) that the point corresponding to v/ wo . 1 + 2hRr (A - 2hRr) . R I
unstable. Moreover, two parameters - V and w2 are needed to completely... . ... .I
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3unfold the singularity C27], and these parameters usually represent the

determinant and the trace of the linear operator when E* * 0, XDr * r hRr

However, in this study E* is identically zero and the damping is generally

fixed. Thus by introducing uI - [h2Rr2 - (i V/W )2D 2] one obtains

dri dE 3

din Er d P n . r t 2R rP n rdT dTrrr

The fixed points are given by

( P1 1/2 ( .1 )112

nr = 0 , Er - 0; nr = 2R P ,r r = -n 2Rp
r r r r

and the nontrivial fixed points exist only for the following cases:

1. If Pr < O, then for the Cases v/w o  o2hRrandv/w 0 +

nontrivial fixed points exist for u > 0 and u < 0, respectively.

2. If Pr > 0, then for the cases P/wo 1 - 2hR r and v/ = I + 2hRr

nontrivial fixed points exist for P < 0 and P > 0, respectively.

3.3 Stability of the Nontrivial Solution

The stability of the "global" nontrivial solution (3.3) is

3investigated by examining the linear variational equation of the averaged

equations (3.2) about the nontrivial solution. Letting Zr = Zro + Xr

and r = @ro + Yr, (i.e., Iro " ro + 8/2) the linear variational equation

*Is obtained as

dX
r1- -dTr ((hr in2oro + E, r)Xr + (2hZ roRrOs2 ro)y ] . (38)

AYrro
a r -[2Zro P rX r - 2hRr sin2o roy "

I
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1/2
Br112

Using the a-f relation corresponding to cos 20ro ± r , the

elgenvalues of the characteristic equation corresponding to Eq. (3.8) are

obtained as 1

P1, 2  -E* ± [(- E*Er)2 ± 4Zro2Pr r1/ 2]1l/2  (3.9) I
I

The positive sign within the square brackets In Eq. (3.9) corresponds to

the positive nontrivial solution of Eq. (3.4). It Is evident from Eq. 5
(3.9) that for Pr < 0, the positive nontrivial solution Is stable, while

the negative nontrivial solution Is unstable. The opposite results prevail

for F > 0. For the undamped case I.e., E* = 0, the equation of rot1cn 3
reduces to

dZr Zr [hRr sIn2;r ])

r lhR rcos2o r - A ZrPr

Now, by Integrating the above expression, and putting Xr = gZr cosor and

Yr= /Z siner, one obtains

9hRr(Xr - ¥r 3 2 4 4(Xr 2 + Yr2)Pr - 61Dr(Xr2 + -r2 Const. (3.10) 1
With the help of Eq. (3.10) one can obtain various phase portralts for I
different values of A and h, and thus the stability.3

I
1
I
1
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COMBINATION PARAMETRIC RESONANCE

34.1 Averaged Equations and Stability Boundary

The bifurcation in the presence of combination resonance, which

exists under the conditions Iwit w2 - wo is studied in this chapter. For

the case of I11 + W21 = wo' by applying the averaging operator to Eq.

(2.21), one can obtain the averaged equations of motion in the first

I approximation given in Appendix A and express as

i=cjhZ 2 [U12 1i(, 2 +V12 co( 1'P 21] Z 1E*& }

I 2 = c{hZ 1 [U 2 1 sin( 1 + *2) + V2 1cos(o1 + 0 2)] + Z2E * 2} (4.1)

3 = I-hZ2[J1U 2cos( + *2) - V12sin(0 1 + '2)  + (N1 - AD,)Z}

Z 2 a 1Z1 21 c s p1 + 2 ) V21 inL i + ) (N 2  - XD 2 )Z2 1

where the quantities U1 2, U2 1, V12 , and V2 1 are defined in Appendix S-1.

I Since it can be shown from the numerical calculation that U1 2V2 1 - U2 1V1 2 -

i 0 and the individual terms are nonzero, one can take U1 2 /V12 =U21/V21

Introducing a new time T - r as before and putting V1 2/U12  tanO, the

I equation of motion can be reduced to

3 dZ1 -- dZR5
d-- - c{hZ12 sin( 1 + 2 e) + Z1E*& }
dZ

dI-. - jhZ 21sin(4, + 2 + e) + Z 2 -* 2 1

I d4
I I dT- ej' 2R12cosi 1 + e) Z1 (N I -D)ij . (4.2)

I
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I
d 2  I

2 _ . _ - 1{hz1R21cos( 1  2 + e) + z2(N2 - AD2),

where R1 2  (U1 2 + V1 2
2 )1 1 2 and R2 1 - (U 2 1 2 + v2 1

2 ) 1 12 . In order to

examine the trivial solution of the above equation, Eq. (4.2) is

transformed from Z, t to new variables X, Y by means of the transformation I

X1 , 2 ' Z1 , 2 eso 1 , 2  ' Y1 ,2 - Z1 2 sinl, 2 " I

This procedure yields a set of nonlinear equations In X and Y as I
dX1 I Ef * X +h(U Y + V X +AD Y11 I
dT 1 1 12 2 1 2) 1 1

- [N1 1 (X12 +1 2  + 2N1 2 (X2 2 + Y22 )]y 1 1  
I

dX2

-X2 Ej* X +h(UVY V xj) +ADY
T 2X2 * 21 1 21 1 2Y2

[2N 2 + Y2) + N2(X 2 , Y22)]Y2 I

1 " E"I Y + hrU1X - V1Y - 1DIXI (4.3)
dT - 1 1 '12 2 v1 2 2 ) -AJX ~

1[N1 (X 1
2 + Y1

2  + 2N1 2 (X2 2 + Y2 )X 1 , and

dT _ 2Y2 4 (u21 X1 - v21 Y ) - AD2 2

+ [2N 21(X1 2 + 1 2) + N22 (X22 + Y2
2 )] 1X21

It is evident that the linear part of these -nonlinear equatJons, correspond

tc the linear variational equations about the trivial solution. Follcwing

the procedure given In Appendix C, the stability conditions are obtained as I
I
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I

1 (&I +2) > o,

I I1 /l> [(0),R p - E. 1 2 )1 D . D2 ).

i 1(4.4)

whiere Rp U1 2U21 ' V12V2 1. Furthermore, the stability conditions redlze

I to

F1 1/21/I - 21 ]>I  hRp I/2 / (D + D2) (4.5)
2 P1 p 2

I
and

Ii - > 2hRp1 /2 / (D1 + D2 ) (4.6)

I for the cases where the system is lightly damped and undamped,

repectioely. It is evident from £qs. (4.4) and (4.5) that F', as to e

positive for the existence of the stability boundary.

One can now consider the case 1wi - w2 l = W0 , again, applying the

averaging operator to Eq. (2.21) yields a set of averaged equations given

IIn Appendix A and expresses as

I . c"hZ 2 [U 12 sin(o1 - 21 + V12 °cos(1 - 02)1 + ZIE*4I 1

Z2 -cjhZ JU 21 sin(*, 02) + V 21cos( - 42) + 2 21

I ;, a £F hZ2 [U12 cOS(0 - V 1 12 sn( 1 - 42)] + (N1 - )D", ,

I 2,;2 ci- hZ[u21cos(o, - 02) - 21 sin(0, - 2)1 ' (1 - ADr) 21

wnere the quantities U12' U ?, V12 and V2 1 are defined In Appendix B-1. As

12 21 1- 21~-.f ,e, it .may be sh-. n Tha.t T. he, ter~ (u 122 - VI21 I, i ... .. ".

I
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I

zero. Following the same procedure given for the case of 1W1 + w2 a W 9

one obtains the stability conditions as

1 + 2)  > 0 , 1

[ 11/2 12 /2

Ii-V/W1 > +(i Z-() ] [h p - E*, E2
11 /(D 1 +D 2  (4a.7)

and 1

- V/Wol > 2hR / (D1 + D2 ) (4.8) 1

for the cases where the system is damped and undamped, respectively. It is
evident form Eqs. (4.7) and (4.8) that the term Rp = U12U21 + 12V21 , ha;

to be positive for the existence of the stability boundary. However, the 1

numerical calculation indicate that In the primary region, I.e., the region

o here (-) Is the critical mean velocity at which the system

loses its stabilitv through divergence, R in Eqs. (4.7) and (1 8' is 3
negative. It Is evident from the stability conditions obtained previously

that the system is always stable (no statIlity boundaries) 1

for 1W, - W21 - Thus, In the remaining section of this chapter, we

5ha! only con!zdcr the ccbination resonance of the type j =+

for 0 < (o~ c

4.2 Stability of the Nontrivial Solution

In order to study the nontrivial solution of Eq. (4.2), the

,ta'ionary states, apart from the %rivial solution 2r = 0, arc crrnI

by putting dZr/dT = 0 and d r/dT - const. In Eq. (4.2) and from the first

two equatlons of (4.2) yield I
I
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(122) (4.9a)

z 20 V21 &1
and

=I - E-(C , -)i/2
- sn(1 * e) - V/2Eq 1/2

hR
p°°s*1 22e [1/2

Cos(.I 2 + e) Y - (4.9b)

I- P

ly adding the phase equations (4.2), one obtains

1/2 2 1/2 _

(DI D h[(V 2  1 22 2 . "2Ii2 /1  U
2 122 12 1 V21 E 21 21

Cos (01 + 02} + (NI + N2 ) - (4.i10)

I sucsti .ting Eq. (4.9) into Eq. (4.10) yields an amplitude-frequency

I relationship as

S1/2 / 22
X - (D + D 2 _ 1 + /h2R E2

+ Zl2[(N1 + 2N1 2) ( -v 1  N +22 2N 2 1)]I ' (4.11)
1V12"

the a-t" relationship corresponding to positive and negative signs will be

called the positive and negative nontrivial solutions.

The stability of the nontrivial bifurcating solution is examined by

I considering the linear variational equation of the averaged Eq. (4.2) about

the nontrivial solution. Letting Z, - Z10 + X1, Z2 - Z20 X 2 and

Aer - 6 " I nev viri3Uifnai e;..1-0 213
3 " o "c 10 2 .. .
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I
be reduced to I

dX 1 -X 2 0  hZ RIco Y1

dT - £{E*X 1 - 1 Z 2 20R12 0

210 I
dX 2 Z10 

( 2
d'- = -{-E*F - x + E*X hZR 2 1 oSY, (1 12)

Z20 10 o I

dY I[, -Fa1 /2 + 1 aN2
dT 10 To azI 3 I z ,2 0]

BN BN
+ ij Fa 1 /2 + (L2 + ) 1 x + E*( + &~20 2 ; 2 2 0 2 1 2

whE e I

F = [(&I/&2)I 2- (),2/,I)I/2] , a - h2R - E*2 1 ,2 ' zO (V2
2  I

In Eq.. (4.12), Zro and 0ro' r = 1,2 are stationary nontriviJr i

.. ,.c, u ir.g t.e a-f relation derived fro. Eq. (1 .11)

V = 0 1 /[)' 1 2  (/C)1/2 ,1/2 - Z2of[N1 + 2N2 1
0 2 1 2 2i 12

, 21 ') (N22  2?+ 2)1 (4.1 I
V V12&2

the characteristic equation for Eqs. (4.112) can be obtained as I
p3 + 2E. C(I + & 2) p2 * [E 2 ( I + t 2)2 + F ; u1/ 2 [0 1 Zo10(& /F2 ) 1/2

+ o2Z2 0(E2 /E1 )112]p 2 c 1 Z10o 1 + Z2 0  0 (4.14)

I
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I

Ial Z 1~ amZ' 2(N1I1 + 2N 21)Zo 0

L1 N2
- -- - 2(N2 + 2N 2 )Z2 0

I1
2 ~ 3Z2 3 2( 22 N1 2  20

For the cubic Eq. (4.14), the condition that none of the roots has positive

real parts is given by the Routh-Hurwitz criteria, which requires thatI
I + E2) > 0,

E* 2 (E + & 22 F 2 a 21T/2a 112 )1/2Z12 [ ( N 1  2N

1 2 1 2 10 11 12

V21) (N2 2 + 2N 2 )] > o,

2E([{ I ) 1 / 2 cLi/ 2 Z12 [(N1 2N1 2 ) (-L- 12) (N2 2  2N2 1 )] > 0,

12 1 1 212)1 /2 11 2[ ( V1 /2 2

2E* 3 ( I + E) 3 + 2F 2aE*(& + & 2 E* E 1/2 Z1 2 ( N 2N (4.15)

I + & , 1 V2 1 ) E,22 (2N I +4 0&2I 1 2-- 2 " 12 22

Since it can be shown that Ei is positive, it is evident from the stability

conditions that for

I I){l *21 2N2 V1
TIN +2N +(N 2  N =F > 0i11 12 E2 1 2 211

the nontrivial solution corresponding to the positive sign in Eq. (4.13) is

stable only if
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I

*2(t + 2 +F2 a T2a 1 /2C~ / 12 2 [I +2
1 F 1 Z10[ 11  2 )

(v2) (N + 2N21 )] > o

and I
(C+ / 2] . [E,2(t1 + E2)2 + F2 a]

2[[F1[21/2 2/1I

14 2 2 [E 2(N + 2N1 2 ) + I1 2
2 (2N N2 2 ) > 0 . (4.16)I )1 1 11 12o~ E -2 v1 2 12 22

It should be noted that in the above e;ati':n the negative and pozstive

signs correspond to positive and negative nontrivial solut ions,

respectively. Furthermore, for light damping, i.e., E* 0 1
and I 1 2' the linear variational equation of the averaged Eq. (4.2) can

be obtained as

dX chZ R coso Y

dT 20 12 0

dX 2 _ "hZ R cosoY I

dT 10 21 o0

dY _ 1i[; 1 FhR 1/2 N + • ) ,Z2 ] X

dT 10 1 2 1 20 I
S[± rhR 1/2 !N N 2) 2  2

Z20 P 3 Z2  az1 Z10  20 2

the amplitude-frequency relation becomes I
I



F-30

I
hR1/ ,))2 - 2z2

1/2 [C1/&212 C 2/ 01)2][1 + 2N )

+ (V211) (N 2 2  2M 1 91 , (4.17)
V 12&2 2 2

I and the corresponding stability condition is

2 1/2 :F 2(,A /&~ 1/2 2[((N +2N 2  + (V1 ( 2 N1) > 0

p '1 2 1011 12 2 22
(4.13)

Thus, for [(N1 1 + 2N 1 2 ) + (V 2 1 /V 1 2 ) (" 2 2 + 2N 2 1)j = @2 < 0, the nontrivial

I solution corresponding to the negative sign Is always stable while th-at

corresponding to the positive .ign in Eq. (4.17) is stable only if

F2hR 1/2
P

Z10 2 I) 2((N + 2N (V2/V + 2N1 • (14.19)
1021) (V221 12)[ 22 121

Evidently, opposite results prevail for *2 > 0. The analysis for the

undamped system can be carried out be letting E, a &2 in Eq. (4.17). Thus,

for the undamped system, the a-f relation is obtained as

*2hR 1/2 - z 0
2[(N1  +. 2N12  +. V12 (N2  +. 2N2 ) (14.20)0 P 10°  1 12 Vl12  22 1

Since F = 0 for the undamped system, by examining the condition (4.18), one

can Infer that for *2 < 0, the undamped nontrivial solution corresponding

to the negative sign Is always stable while that correspoinding to the

positive sign Is always unstable. Furthermore, for 02 > 0, the opposite

resultm prevail.
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I
4.3 Bifurcation Analysis of Trivial Solution

As pointed out In Appendix C, the trivial solution

of Eq. (4.4) losses stability at A - ± Ic (i.e.,

Ic H I / )2)1/2 22 / )), and undergoes a Hopf

bifurcation. In order to examine the local bifurcation behavior, the I
linear part of these equations is brought to the simplest diagonal form

with the help of the transformation (XY * u,v) given in Appendix C. This

procedure yields

U-B(A±) u + g(gs.Ay, jus C(I±)y + h(q,yA)

where B(A) and C() are defined In Appendix C by Eq. (C6). It may be

noted that the nonlir,ea functions g ar.d h are different for X and X .

to the fact that the eigenvectors of B and C at Ac and Ac are different

even though the elgenvalues are the same. For the problem under

consideration, the nonlinear terms are cubic in u and v. Thus, the

contribution from the stable modes v to the equations restricted to the

center manifold is of the order lulk, k > 3, and can be neglected in the

first approximation [28]. The bifurcating periodic solutions are given

[28] near A = X A as

u1 a z sin* , u2 = z cos , (4.21)

where

z- - (6Y/R) + , - t + a

A --
CC

-(/) -, I!I-Y 6,I'l/
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112 621/2

0 _ ] / (D1  D2

' 3 3 g2

I .. 43g. +a3 2 . 3921
16 3 3UaU 2 3u 2au2 3u23 u v 0

1 1 2 1 2
1 3  au~gl au3 2 a32~

The expressions for R and S are obtained from g, and g2 , which Is given in

Appendix C by Eq. (C8). In addition, it can be shown that

Z 4,C 2  r 1,212 (4.23)

ro r

where Z and z- are defined in Eqs. (4.13) and (4.21) respectively.ro

Furthermore, at (V/W (V/WO )e rhe derivative of the real part of t.,e
0 0oc

critical eigenvalue, 6;, is negative and positive respectively. Thus, tne

nontrivial solutions exist for Y > 0 only if R < 0 and R > 0

at X and A respectively. Furthermore, the stability of the trivial and-- c a

bifurcation paths are given by

dw 6'Yw and d- . 26'Yw . (4.24)
dt dt

l 4.

Since In this problem R < 0 at X and R > 0 at A (from numerical

calculations), It is obvious that at Ae the averaged system undergoes a

stable supercritical Hopf bifurcation and at A the averaged system

rundergoe.i an Lnstable s.tritical Hopf tifurcation. The und .- -
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I
becomes unstable at Ac given by Eq. (4.4), due to the eigenvalues In the

Imaginary axis coalescing and one pair crossing to the left and the other

to the right half of the complex A-plane. Such Instabilities in the

context of Hamiltonlan systems give rise to a so-called Hamiltonian Hopf

bifurcation [29). The linear operator at this critical A value has a non- 3
semisimple form, and the bifurcation behavior is yet to be examined in

detail.

I
I
I
I
I
I
I
I
I
I
I
I
I
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NUMERICAL METHOD

5.1 Numerical Results of Analytical Method

The numerical results of pinned-pinned pipe and clamped-clamped

pipe for subharmonie and combination resonance cases are discussed here.

3 In order to inve3tigate the ra:etric instability, the unpertur -d 3yte

is assumed stable and only the primary stable region will be considered,

3i.e., U 0( (U 0 ] 0c where (UOcIs It and 2vr for pinned-pinned and clamped-

clamped pipes, respectively [17] and represents the critical mean velocity

at which the system tecme unstible through divergence.

We first discuss the case of subharmonic resonance. The numerical

calculations indicate that, in the primary stable region the
22

terms &r, U +rr rr appearing in Eqs. (3.1) are positive. Thus, it is

evident from the stability conditions (3.6), that the stability boundaries

exist for v = 2w,, v 2w2 . In Figs. la and 2a the relationships

between p and v/w01 (W01 is the dimensionless frequency in the first mode

when u - 0) for pinned-pinned pipe with eE* = 0.015 and cE* = 0.005 areo

shown for the cases v 2wI1 and v : 2w2, respectively for uo = 1.88.

Similarly, the stability boundaries for a clamped-clamped pipe with EE* =

0.005 and cE* - 0.001 are shown in Figs. 3a and 4a for the cases v = 2w

and v 2 2 , respectively. In Figs. la - 4a the points S and DS represent

the parameter values at which the instability of the trivial solution of

the averaged system Eqs. (3.1) occurs through a simple bifurcation (one

eLgenvalue crossing the origin in the complex A-plane) and double zero

bifurcation (two zero elgenvalues crossing the origin), respectively. The

associated bifurcation paths are shown in Figs. lb - 4b. For a fixed value

of 0, as v is increased, the trivial solution loses stability at left Poi- t
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I
DS or S depending on whether the system Is damped or undamped. The

nontrivial solution defined by Eq. (3.4) bifurcates at either point DS or

S, giving a stable nonzero but constant Zro value. The corresponding I
solutions of Eq. (2.21) are periodic with period 21T1w r, r = v/2),

where w r and Zr are related by the relationship (Eq. (3.4)) as shown in 1

Figs. lb - 4b. On the other hand, if v Is decreased from the right to

left, the trivial solution becomes unstable at right point DS or S and

bifurcating solution is unstable as shown in Figs. lb - 4b. 3
Secondly, for the case of combination resonance. The numerical

calculations indicate that In the primary stable region the terms iE 2 and

U12U21 + V12 V2 1 appearing in Eq. (4.1) are positive. The stability

boundaries for pinned-pinned pipe with cE* 0.005 for u o .8 a I
clamped-clamped pipe with cE* = 0.001 for uo = 4.0 are given in Figs. 5a

and 6a, respectively. The points H and DH In Figs. 5a and 6a represent the

parameter values at which the instability of the trivial solution oi the l

averaged system (4.2) occurs through a Hopf bifurcation (a pair of

conjugate elgenvalues crossing the Imaginary axis in the complex -,iarie e

and double Hopf bifurcation (defined before as a Hamiltonian Hopf 3
bifurcation in Hamiltonian system), respectively. The associated

bifurcation paths are shown In Figs. 5b and 6b. For a fixed value

of as v is increased, the trivial !olutlon loses stability at thc. lift

point H and stable supercritical Hopf bifurcation takes place and a I
Periodic path branches off. The corresponding solutions of Eq. (14.2) are

modulated periodic solutions. On the other hand, at the right point H, the

triv!al solutJon loses stability, as v is &creased from far right, through

an unstable subcritical Hopf bifurcation.



IF-36

The numerical results of the local bifurcation analysis pertaining

to Eqs. (4.21) -(4.24) are calculated for pinned-pinned and clamped-clLped

pipes. Even though the numerical results differ from that of the previols

results in the third digit, the plots of these two results are nearly

identical as shown in Figs. 7 and 8 for pinned-pinned and climped-clamped

pine, respectively. It is evident from the numerical calu..itton that the

value of R and 6' In Eq. (4.22) is T 0.00997 and ; 0.0616 respectively, for

pinned-pinned condition at A . On the other hand, R and 6' are T 0.00546
and ; 0.131 respectively, for clamped-clamped condition atX

5.2 Numerical Scheme for Periodic Solutions of Autononous Systen

The analytical results, of the periodic solutions of the averaged

equations, obtained using the Hopf bifurcation theorem is valid only in the
±t +

small neighborhood of I A ± For large values of Y = A - X-c , these

solutions become inaccurate and therefore it Is necessary to use a

n imerical scheme which can determine the bifurcating periodic soluticns sf

the autonomous averaged Eqs. (4.3). The straightforward method of

calculating steady-state periodic solutions of nonlinear autonomous Eqs.

(4.3)

3 -t~~u1~) ao) - a, 0 0 a xy (5.1)

is to numerically integrate the differential equations from some initial

state until the transient response becomes negligi!le. However, in a

lightly damped system, convergence to the steady-state response is very

slow, and the integration must extend over many periods making the

computation time consuming and costly. Thus, in this study, we shall make

use of Newton-Raphson algorithm given by Aprille and Trick [30] to
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1
determine the period T of the response and the initial condition ao such

that integrating (5.1) from the guessing Initial condition a over the time

Interval [O,T] yields immediately the steady-state periodic solution of

period T. In this method, the Initial value problem (5.1) Is transformed

into a two points boundary value problem 1
1

a- E[T,a0) , where E(T,a) a + f T > 0 (5.2)
- o- o 0I

with 4 equations and 5 unknowns, a 0, T. The resulting set of nonlinear

algebraic equations are then solved using a Newton-Raphson interaction

technique. Such algorithms have been used by Tousi and Bajaj [31] to solve

perlcdJr- solutions of averaged equations.

It Is Important that the InItial guess of the period T and the

Initial condition a is reasonably good for fast convergence of this

algo-Ihm. The known analytical solutions of the Hopf bifurcation theorem 3
+

can be used as a good starting point near A .a Once the period and the

initial conditions are obtained for a specific value of A, these values can I
be used as the starting point for calculating the period and Initial 3
conditions for A + AA, provided &A is sufficiently small. The stability of

the periodic solution a - *(wt) Is governed by the variational equation 3

d- . A(t)t , Ait) 2 ( )) t = t5.3)

I
whose solution can be written, for example, as C = C0€'(-) and Co is an

artitra.-v constant. The Floquet multipliers are eigenvalues, %,' of the 1
monodromy matrix and one of the elgenvalues Is +1. The periodic solutions

are stable provided the remaining multirllers lie Inside the unit circle. 1
I
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There are three ways in which the periodic solutions can become unstable:

,i) by one multiplier of Eq. (5.3) leaving the unit circe th-o, -'

giving rl.,e to a saddle node bifurcation, ( i) by one i' 1lp!.

crossing the unit circle at -1 and the associated bifurcation is referred

,to as a period doubling bifurcation, and (iit) by a pair of conpl-e<

conjugate multipliers ,C, with RI - I, giving rise to a qolution on 3

two-torus T2 . It will be seen in the numerical examples that only !addle

node bifurcations take place for the problem under consideration.

The periodic solution obtained using the numerical scheme is shown

in Figs. 9 and 10 for pinned-pinned pipe and clamped-clamped pi:e,

respectively. Even though the numerical method involve9 a considerble

amount of computations, the known analytical solutions were used to reduce

this effort significantly. In Figs. 9a and lOa, the amplitude frequency

relationships obtained analytically and numerically are compared for the

damped system. The period T of the bifurcating orbit is plotted igainst

the frequency v = w 1 + 2 for the damped system in Figs. 9b and lob.
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CON CLUS IONS N
In this study, the ideas related to the method of averaging, 1

Poincare-Birkoff normal form [27], and center manifold theorem [28] have

been used appropriately at different stages of the analysis to investigate 3
the stability and bifurcation behavior of nonlinear supported pipes

conveying pulsating fluid. Explicit results for the stability boundaries

Of the trivial solution, bifurcating paths and their stability have been 3
obtained for values of the system parameters p, E* and v, where the value

of v Is taken in the neighborhood of v = 2w I , v = 2w2 and v = w + W2 " It 3
Is shown that when the system undergoes a combination resonance, the

urcating solutions of the averaged system are periodic a. opposed 1
constant solutions which bifurcate in the case of subharmonic resonance.

Thus, In the case of combination resonance, the original system exhibits a

dulated periodic solution or a T2 solution as opposed to period tw 3
.olutions In the case of subharmonlc resonance.

There are two types of bifurcating paths obtained from the 1
analytical method, namely the "global" and the "local" bifurcation 5
solutions. The "global" bifurcation solutions are obtained directly from

the averaged equations as nontrivial solutions. Whereas the "local" 3
tifurcation solatio. s are oltained tv ex&,Inlng the instablllty of the

trivial solution of the averaged equations and Its various bifurcatlons. 1
These two results agree in their common regions of validity. Finally, the I
nimerJcal scheme which determines the bifurcating periodic solutions Is

cnly for the case v w It Is evident from the sensltiv!tv

of the averaged, autonomouS equation that the step of each Integration

should be sufficiently small. I
I
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U0  1.88, Mr 0.8, Et O 0.015, W01 - 9.87
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.40 Iamiped
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I .(ZII
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00 1o... ///

II I ! 20

0.00-.o.........2'............1, ... ..... 2 V/w 0 1

Pinned - Pinned Pipe v- 2W1

Figure 1 (a) Stability boundaries, and (b) amplitude-frequency

relationships for pinned-pinned pipe - subharmonio
resonance v - 2 w1 , - 7.71.
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U0 = 1.88, Mr 0.8, E" 0.005, W0 1 , 9.87
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I , Ij jI

05I I 1.1iT
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Pinned - Pinned Pipe v= 2W2  I
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Figure 3 (a) Stability boundaries, and (b) amplitude-frequency
relationships tor clamped-clamped pipe - subharmonic
resonance v a 2w1, W a 16.98.
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Figure 4 (a) Stability boundaries, and (b) amplitude-frequency I
relationships for clamped-clamped pipe - subharmonic
resonance v - 2w2, w2 - 56.77.
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Figure 5 (a) Stability boundaries, and (b) amplitude-frequency
relationships for pinned-pinned pipe - combination

resonance v - (at1 + 2' 1 " 7.71, w2 38.55.
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Figure 6 (a) Stability boundaries, and (b) amplitude-frequency
relationships for clamped-clamppd pi~e - c'mtinatlon

resonance v - w' + w2s wl - 16.95, w2 - 5-.77.
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Uo - 1.88, Mr - 0.8. E - 0.005, WO, - 9.87

I --- Local Analysis
Figure 5 Result

1.50

1 1.00
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4 Pinned-Pinned Pipe v-Wj +W2 (damped). 5 VN 1

I

I

Flgure 7 Comparison between local analysis and Figure 5 result
for the amplitude frequency relation for pinned-pinned

- pipe - combination resonance v - w1  w2. W1 M 7.71,

2 - 38.55.
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Figure 8 Comparison between local analysis and Figure 6 result
for the amplitude frequency relation for clam, ped-clamped
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F1gure 9 (a) Comparison between analytical and nierical re.:'.t-s
for the amplitude frequency relation, (b) relationship

between period and treqeuncy v, for pinned-pinned pipe.
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Figure 10 (a) Comparison between analytical and numerical results
for the amplitude frequency relation, (b) relationship
between period and frequency v, for clamped-clamped pipe.
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I
APPEND[IX Fl

AVERAGED EQUATICI OF PAR.AMETRIC EXC[TATECC

The .verijed Aquitlon In the fIr3t -ippro:i<£ A'Lon ,')r 2herL i2.

cases Ot Eq. (2.21) are

(1) 2w w

1ha [,vD,(2.2)(w 2  - a,,&

S I I )( a i 2  - ' . (2.1)(w2 a, -

0 ,. 1 w 2) ]  2)

0,2(t.2)( W : 2 2(u 2

- (.,j2c~a ' a32  3 '1_

I 3 1 2 - 2

1 1 2 3 1 1 1 2 2 2 2

" D i vo(2.,)(w2oa2 _ w 1 ) + D (1.2)( 2a 1
D( 2 1 1e 2 2 1(!' 2a1 - ( 2 2

2 2 1) i 2  1 2  1  2 12

2 2

+ 1 4 ( €,, ,2 _ , a a 4(w 2 ,,,, t2, 2 a a
121 2 12 2 12 -1 22 102'1 +'121

Jjx~I vD (2.)(wea1  -D (1.)(lacL2 2

02(2.2)ciila1 2 1 02 11(i~ 2 1 12 - 1

+ ( 2,2)(,ca - cl 2z) 4 D (1.1)(w a w -wct c os

-ID (2)(w~a i 2) w D (1.) (a 1 2 -212c 32 0

3+4 D (2.1)(wi2 az1 w 1mj )0 2(1'2) (a 2CRIS - WIa 2(1
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I
2 2 2 2I

* D3 (2,2)(w ala2 - w l201) D (1, 1)(+ 2 - W2 i02 )] sin2o1
,2, 2 2 3 2 1 I

+ z 2 [3C(2,2) 2(w 2 1 -2 _ 1 a 1) + C(1,1)C(2,2)(w 2 02  + w2 0I

3 2 2 + - 2a]

aia23a -W12L1) +3C(I,1) (W2a2 -11 I

1 2 3 2 2 2

+ 2 3 )2,2

w2 1  1 2 1  - 1 Oi 2 j 3C(1,1 2 22 1 1 2

+ A[G(1 2 1 2+ =Wi 202

',2wl c2 "lI  W 1 W2 C1I) + K 22(,01,1 a 2  - m2 a1 2 ) I

2 2 2 I

- W2=1a 2 + 12/ [2

211 1 1 1 2 w2 1 01

(2) 2w2  W

Z- 22v D(2,2)(wo 22_ wC)L2a
2 212

2 
2 2 2 2

- PvD 1 (, 1 )(w 21O2  - W 1 Q
2 ) + vD 1(12 )(W2a 2 a1- W a2 1)

" D 2 ,2)(w a20 2 -w a ) 4 D 3 ,)(w a - 2

2 2 2 , D212)( 2 1 2 1  1 1

2 12 21 2

" D 3(2.1 )(wlw 2 c2 - 42('l) + D 3(1,2)dwi w2 a a2  w 2 a 2 )qin242

" 2c [A4Cw W2  _W ~ 2o a 2 ) + A 4 20I

I
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1 2 2 2 2 2 1

I -( ja [ 2,a 1 w I - w ) + ,D 1,2
-2~C2] 4 ' -2u1 '2 (2 ~ '2I2 )

2 1121 2

5 4 D2 (2,2)(,u 1 a - - c 2)

2  1 2 12 (

CD3 ( l,2)(2aLaI - w 1 ia cos2 2 2

3 ~rD 2 2 w 1  2  1 2 (1 ) 2 a 2

".0 (2 ,( w a 2 - W=
]
J 1(C + I, i2 ) -a 2 W 

)
2 12 2 1 2 1 2 221

I 4D(2,1)(w - D1+,1)( a a - c

5 4.z 2 4c(2,) 2(wa~cz ~2)2('i~ _C2,2),)~

I 2a1 a2  -,.2a2a1 ) 3C(1,1( 1  -1 2~ 2~

2 2 r2 1
-D (2,2)Wa 1 - 'A) W C2) a) (22 w2( 1( 2 -  .0)

22 1 221

+ . 2 K (a 2 (  
L 2 2 (a) +1C1/  2 - 2 a 4+- 1 1- 2 a2 ~ m 1 12

I a I a 21 'Aj2a2a13 CI.)( L12 w232a1

221 2 11 2 2 2

I

2,2I1 (wa2+W a 2  2 Ic t3

3C(1,l) CjA a - w a~a Jt w 21 l2

1 w 2 w Ia1(2 I2) W, a2 K 2 2 a a2 -I 22 )

+KWIa w 2212 2
11 2 1 2 w1a 1 2 12 21a

w. wa +i - /L a 1

2 w2 1 1  w12 1 2)

3(3) 1wl 21  W.

I z Z2i" IL \D(2,2)(w 2 21a2 1 a 2-i) +\DI w1 j 1 1:2 2 2
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I
+ D2 (1,2)(w 2 a 2

3 - wl 2 a1  I

+ D2(2,1)(w2a1 - w a2 ) - D 3(2,2)(w 2wla 2 - m22 a1 )

+ D2 (2,2)(L 2 a 1 a 2 - w 1a22 ) + D2 (l1,)(W1 ' 2a 1 - W2 2
2 )

" D3(2,1)C( 2 C - w w2a2 ) + D (1,2)(w 22a23 - i )2 )]sin( I
3 2 1 2 2 3 2 2  1 I2 2 1 1  2

" 2cZ 1 [A 2 ( 1W 2 a 1 2 1 a a2 ) + (2w 2
2 1 2 2 2 2 I
-aa / [4(w 2  w w a 2 -OWC + W ~2 a
,,<1 1,2)]' 2 1 2 -2< 1 2111 1 2"

z 1 = 1z2 1[ vD1 (2,1)(w 2a -IwIa 2 ) + vD 1 (1,2)(w 2a2
3  I

1 2 1  2  1 2  2 2

- w ala 2 ) + D3(2,1)( w 2 a2 - 2 0 + D ( 12)1w w2 Cl a
1 2 3 22 1 3 122

- W2 a
)] cos(o 1 + 02 - i[vD1(2,2)(w2 aI 2  w a 2

23 I, 2 12 1_

a 3 u 2IL( .), iA2 (

" C(I,I)C(2,2)( W 2a2  + w2a l ? W ia2 a - la ol

D. 2c( ,i{w 2 2 - w 3 91' )) ( , 2  =
2.. I I N I N 2I~ l i 2 2lIN I I l
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+ C(2,2) 1)( 2 22 2

C( 1 '1 ) (~a2CL,+ W2I
- I a 2 CL3 - WI 1CL2 ) + 3C(O) 2 (w2ci 2

2 - ,lI1(2)1

2 2  2 2

[G( wI 2a1 *+ WI a2 - 2 1a 2 a1 - w1 w2 1 )

+ K22( 1 a1a2 - 2  ) K I 1C - 2 L w 22  )]l1 /[4( w, 22 1 a2

2 12 2 1 1 12~
I2 2 42 )

21 12 - 2 w}1G(1  1 1l(2 ]

i2 - Z1{d[vD 1(2v2)(w 1 I ct2 - w 2)

+ ,,D I , )(,,2',2'1 - iIl + D 2(2,1)(wI a,2  - , 2a1)

+ D (D (,1)(W L - 1- i
1 1(2 2 1 - w2a 2 ) +D( 21)(. 1 - 2

2 2 2 2

D2(2,2)(w2a 2 2) D 2 -)(w I 2 w I a
3 '21(211 112 2}

+ D [(2,1 2  - •a D (12) (2 3 -iw wDa(a22(2 s 3)
3 2,) (WI2 2 1  32 1

2 4. 1 1 a 1 2  2 1  12

21A2 2 1 2 )Jn(1 2)1

+ A (Ww c 2 - w2 CL j [40(iTw a - w w 2 a 2

1 2 Ii~~ 1 a 2  1 2 212

2 221 1 11 2)]

3 I z jf[D (2.1)(wc12  w 2G1 ) +. D 1 2) (w "l

-w2alt 
2 ) + D2 (2,2)(w 2a -2 _w L 2

+ D2(oT)(W1ia2 - W2a 2 aI) + D3 (2,1)(w2wi aI - w1
2a2 )
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I
*D3(1.2)"(w wcI 2 _ 12al3)]cos[ol + ¢2)

-1[vD 1 (2.2) (wla2a I  - w2 1 2) vD1 (1,1)(W2a 1 a2  - wI ai 2 )

+ r,2 (2,1)(w1 a2 - w2a1 ) + D2(1,2)(wl1 3 - 2a 2a 2 )

+ D (2,2)(w w CE 2 2a t) + D (191)(W1
2cal2  - w w 2 L ]sln(¢1  2

3 21 l 2 2

il r 1 C22) 2 a o 2 2 3)UZ2 1Z12 [(3C(2,2)2ml0201 - w 20 20l1

S*C(2,2)C(1'I)(W a I + WIa 2 - w2 a2 - 2c2a13)

3C(11) 2- ,,(,22 22 -
-2 2 a I" ( 1  W 1  2 2 2 222 1

2 2 22 2222-(2,2)C(l-l)(wa 2 - a2  2 2 a 2 3- a a)
2 1  - w 1 2

* 3C(1,1)2 (,W2al - a2)2 a 2 IO

2 1 21 2)) + (w

W 0 - W 0 cw~ 1 w 22212 w a - 3
1 1 2 12 1 2 1 2 a 22w 2 1

2 12

K i 2a)]j / 2

1 40(2401012 w, '2212

(") W 21 - -

I {: 2 {'dvD1(2'2)(L2 >: "* vD (1,1) (w 2 02
2  

- la ) 3

+ D2 (2,1)(w 2  _ ai) 4 D2(1,2)(w 2 2 3 _ 2a

2 ( 102 2 2 2 2 202)1

+ p[vD1(2 1)(w 2 1  - 0102) * vD(1,2)(w, a 2 aI " "2a2 3 )

@ l I
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1 22 2 23 2(2,2)( 2i2i wa2  D(,) ,,% 2

" D (21 2 +a W W + D (1,2)Lw C C

3 2 3 21 21 2 3 212
'2 2 i 021+2cZ (A 2 ( w1CLI o Ia Ia 2 )

+-(( 2 w / i) CL ,1 2 ,.,§1a2

1 2 112  212 2 2

to~~ ~2 2 wD( 1 )+ Ia )

z 21j D 1 (2,1) w I 2 - 2 ,

" uD l 2) 3 22,) icl2 3 -+ (2cL) ,2)( 2 a2a

II 122 2

(w {z L a - CL +(cD 2 , )f CL 1:C

1 i1 1 2 2  - 3 a ;
" D(1,2) (w2 2 1 2 a -waa) +
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-l[v (2,2)(w a 2) (11i)(W 2
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1 2 2 wl2 - w 1 ' 2  22
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- ,. 3c(1,1)(w 2a - w e 2 )] 3 2)
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"r Grw2 aa2 +W2 a w a2a

AGa 1 2 1 *"1 ~2  2 w2 1 2 1 -
I

" K2 2(w1 1a2 - w2 1
2 ) K11 (w 1 1 2

_ 4r2 2 2 2
'2 2 j I / 1 { 2 GIa2 - 2 1 2  I'W241 + w aII2 ) ]

22 "Z 1{u(vD1 (2,2)(w 2 a2 1- w1aIa2)

+ vD1 (1,1)(W 2al 2 - w 1,,1
2 ) + D2 (2,1)(w2 i1 - W1 2 ) I

+ D 2 (1,2)(w 1C 1
3 - w2 a2 c12) + D3(2,2)(w 1

2a 1 2 - wIw 2 a 1

(1 1) (W2 a2  w1 wG 2) - t)- I~D(.1(lL
3 1 1 lal2]cos(o, li~D(,1(~zS .- 'o 1 ,
2 aI + D1 (1,2)(w 2  l2 1) 2 a 1 11 ' D2 (2,2)(w 2a1  1l2 I

" D2 (1,1)(2ta2- wIa1 2) + D3 (2, 1)(w 2waI - w1
2a2 )

SD(1,2)(w1 2a3 - wl a 22)lin(1 - 2 E 4( [ wa)2

3 1 1 2 2 1 1 2) Z[2 ~"2 1 23

- w2 a1a2+x14()2U w2/2aIa2] [(w F 1  2

- ' 22wI 2 I L )
212 1 2 1 21 1 1 2

4 )3( 2w ll wl 2 ' ) ] I( 2 w wIa2a12)c t1 2
2  {ZI {[vD (2,1)(Wla 2 - 2 I ) + vD (I,2)(w2 a 12  la )

I wl2 2) I

•D2 (2,2)(w
2
I  4 l2l D2 (1,1)(ci 2a2a I - 10 2) I

-321) a -w 12a2 ) *' D3(1,2)(w 1
2G1

3 --

- I[VD 1 (2, 2)(= la li2 - ml2) " vD1 (l,1)(w l1 2 - w2=a2})

* D2 (2,1)(w,'2 - w2'1 ) + D2(1.2)(w 2a 1 2 wI1 ) 3
+ D (2,2)(Ww a 2 w 2 a- ~ 2 a2 -(

3 2 1 1 - -2  )(w2wla 2GL a-))l In 1  I
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+ Z2Z12 K[3C(2,2)2( 2 a2 3

+ C(2,2)C(I,1)(W I  W1 a2 - w2a1 2 w2 a 2aa 1

3C(l.1) 2( w 2 2 3C(2,2)2(a4 a2 3a

CC2.2)C(1.1)(W1 a2 + wa2 2 ci 2 - w aclc -a3a

2 22

+ 3CCl1l)2(w 1ca1
2  2 2c' 1'L2 )]
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APPENDIX F'Z

DEFINITION OF PARAMETERS IN THE AVERAGED EQUATIONS

I. The parameters in the averaged equations are defined as follows: 1
D I D , r{ 1  ' I

A " vDk - (D + Di ,k1 O3.k2j D4,klU i

B - [,,D1,k 2  a 4 + . k1 - D4,., jcj)] .

U 1 2 + A a 1B') / (46)

U22 = - A2A - A~coIB 2) / (Ma) ,

V11 = (A2 B1- / (4L) 1

v22 =(-A 2B2 _A / (4,) ,

2 (A 2 + AaB1 ) / ( 4L) I
u2 1 =(- 2 A1 - 1 B ) / (1J)

V 2  - a B - A1 a A / (4A)

22 22 112

v2  -(AA 2 + a /B ()

1 2 " CA2 A - 1 2B2 ) (u) .

u2 . t ( A 2 A, ) a B 4 I
~21 -( 2  A 1s 1B 1i~)

V12 - (a 2 B2  A 2 A2 ) (4,)

12 2 2 *A1 12 2

21 2 1 (1A

where < 0 . 1

1



IF-60

I1. In the averaged equations the damping, nonlinearity and detuning terms

are defined as follow: (r = 1,2)I
1. Damping terms:

1 ~~r r {2z r r2 1 r 3-r, -,r, ,
I!

E r =E r

2. Nonlinearity terms:

I -1 2

N (<12)((3c2 2 CL )3% C (c 2 2 c1 1 a2a3 )rar 22 r 22 11 r 2 2 1r 3-r 11 3- 1'I

2  (,/2)(3C 2 2  M c C2) + 3C 2 a )A] '

r 2 r 322 rN2 22C113-r 3 -r

N N (Iz2 + 2i2Z3"2) ("}r] (46)

Nr r r r 3-r~ 4~

3 and let

N I N11Z1I + 2N12 Z 2I
N 2 2 21az1 2 + N222 •

3. Detuning terms:

AD [ [(+W2 2 2 . r2 3_

-G 3 rCAwrr +" 3 -rwra3rr - 3-rarr Wr a3 -r

K22 3-r 2ar 2 rMra3-r + K3-1(r3-r3_r -1W r3r3-r)11/(46).

1K ~ 2 . g 3 r~ rr

1
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APPENDIX F3

STABILITY CRITERIA OF TRIVIAL SOLUTION AND FORMULATIONI

OF LOCAL BIFURCATION ANALYSIS

The stability of the trivial solution is determined by the

elgenvalues of the linear part of Eq. (4.3), i.e.,

J4 a303 2 1 0 I(Cl)
where 3

a3 , 2 E*(E1 + E2) a 0

a2 = A2 (D1
2 + D2

2 ) + E*2(El +

a1 =2 E*A 2(D 2  + D 2 f - 2 + ( +1 1 2 . 1 2) n,

ao = (n - A2 DID2) 2 + A2E*2 (DI& 2 - DaE 1 ) 2 a 0 ,

and i
(h 2 - E 2

The stability criterion can he written

a0 > 0, a1 > 0, a2 > 0 , a3 > 0 and 3
2 2

a4 W a a 2 a3 - aoa3 - a1

. 'E*2[ 2 ( 1 2 (DI + 2) 2 - (Z + 2 ]).[A 2 (DI - D2 )
2 + E 2 ( 1 + t)2 > O.

It is obvious that for Rp < 0, I.e., n < 0, the trivial solution Is always

stable and for Rp > 0, the stability criterion reduces to I
1cI 2 ) > 0 , x2EIE2(D I + D2)2 - (E + E2)2n > 0 (C2)

I!
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I
The trivial solution loses stability when

t ('I I/2 + .E)1 2/2

I
At ~~n / 1()~ 2 (D + D ),(C3)

2 El 1 2

and the eigenvalues are

2 a 2 1 12

Ia
and

t a !12 _aa /

3,14 2 2 a1I
From the direct and adjoint elPenvalues problems,

i.e., Aa - Qa with a c + Id and A Tb - Qb with b - e + if, one can obtain

the elgenvectors a and b, respectively at A - A at Ac and A, the

elgenivecor3 may be differer.t even tho, gh 2Qi '+e ".e .-. Le. -'irther-. f.

3 depending on whether 0 3,4 are complex or real elgenvalues one can make use

of the transformation

1 1 1 2 2
Y . 2c12(C u + d u + 2( v +

j 2+j 2+j C22+j 1 d2 +j 2).

I or

X - 2 (Clu + d1 u2 + a v + a4v (C5)

I 1 j ,, 2 1 1 a 2

J2 2+j 2 + 2aj 1 2+j 2

I to reduce the linear operator to

I



I IF-63I

diag {[ I]. C 2 2  or diag {[ 3 4 (C6)
- 1 0 -W2 -62 "W 1 0

Superscripts here, denote the elgenvectors corresponding to the critical

eigenvalue. The 6's and w's in Eq. (C4) are the real and the 1-aiinary

parts of the elgenvalue. It is evident that the averaged system exhibits a

Hopf bifurcation at X = 1 and the results of the bifurcating solutions are

given In Eq. (4.21). in order to obtain the values of R and S given by Eq.

(4.22), It Is sufficient to express g1 and g 2 In terms of new variables u,

and u2 alone. This Is dae to the fact that v, and v2 can be neglected In

Ths putting

I - -[N 1 1 (Xi 1 12 2N (X 2 +2 )

F2 =- (2N2 1(x 12 Y NX2  N 22 2 Y2 2 , I
2 2) 2(X22 Y2

F3 = [N 1 1 : 1  Y 1 1
2)r 2 x • × , (::

F4  ["21(X 12  y 2 1 N2 2(X2
2  Y22)j x2 '

1 ~2 )  ¥J (2+ju 1  2+ju2)where Xj 2Cu +u - 2CC 4 jud1 U

and 3
1 1 1 1
1. 2  e3  (CB)

1 2 3 4

we can write G - S • F as functions of uI and u2 .

I
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APPENDIX j:j

STABtLET'( CRITERIA CF 4CNTRIV[AL SOLUrIC

3 the ntibtlty of the char wtarL.3. t equit.n !4.12) L -i -,

Routh-Hurwitz criteria, i.e., for equation

I3 a 2 a 0,

w where a- 2 2 )

aI E'( : 1 )2 F2 1 /I

a 2 [ l 22 i

a0-;2E'(&l /&2) 2[Z10"I +20'21

3 ~r:-.e i~aziI.L~ crte..ri~ cal b~e we-lt~el a3 'i~

I a > 0., a1 > 0 , a 2 > 0 and

ala 2 - a0 - 2E 3(e 1 + & 2 3 + 2F 2 ac.(&I + & 2 )

I
I.

I

v Ec Ia o( &2)/ 0(2/, /

I )12(l 1 Z2 !21
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